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ABSTRACT

EFFICIENT TWO-STAGE GENETIC ALGORITHMS FOR

COMPREHENSIVE MULTI-OBJECTIVE FLEXIBLE JOB SHOP

SCHEDULING PROBLEMS

Danial Rooyani Advisor:

University of Guelph, 2023 Professor F.M. Defersha

Among all the different scheduling problems, the Job shop Scheduling Problem

(JSP) and Flexible job shop Scheduling Problem (FJSP) are the most popular and

difficult optimization problems. FJSP is an expansion of JSP where an operation has a

set of eligible machines, unlike only a single machine at JSP. JSP and FJSP are classified

as non-polynomial-hard (NP-hard) problems that exact algorithms cannot guarantee

finding the optimum solution in a finite time. So several heuristic and metaheuristic

techniques have been developed to solve them, including Genetic Algorithm (GA), which

is by far the most popular one. However, the quest for more efficient and effective

algorithms continues.

Regular GA (RGA) for solving FJSP determines both assignments of operations

to machines and their sequences simultaneously through a random process guided by

the principles of natural selection and evolution. In this research, we develop a Two-

Stage Genetic Algorithm (2SGA), with the first stage being different from RGA for

FJSP found in the literature. The first stage has a unique solution encoding that only

determines the operation sequence for assignment and then uses a greedy approach to

assign the machine with the quickest completion time to each operation, considering

the current machine load and process time. The first stage creates a high-quality initial

population for the second stage that follows the common approach of RGA for FJSP

to enable the algorithm to search the entire solution space by including solutions that
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might have been excluded because of the greedy nature of the first stage.

The efficiency of 2SGA compared to RGA and some other common algorithms has

been successfully tested using published FJSP benchmark problems and randomly gen-

erated examples. We also applied 2SGA to more comprehensive FJSP models with sev-

eral features, including detached or attached sequence-dependent setup, machine release

date, process lag time, lot streaming, outsourcing option, and subassembly requirement.

Numerous comprehensive sample problems have been generated to show that 2SGA out-

performs the RGA in different aspects like convergence speed and solution quality. We

also noted that the superiority of the 2SGA over RGA is much greater when solving

large-size and more complex problems, rendering it a viable choice for solving practical

problems typically encountered in industries. We also showed that further performance

improvement of the 2SGA can be achieved using parallel computation. Parallel compu-

tation is considered the most effective method to improve GA performance. However,

we have demonstrated using several numerical examples that the sequential version of

the 2SGA (using a single CPU) outperforms a parallel implementation of the RGA that

uses many CPUs. This shows that 2SGA is potentially a game-changing concept.

The vast majority of scheduling algorithms consider only one or two objectives

from a very limited list of performance metrics, while industries seek to optimize various

performance measures simultaneously. Hence in this research, we expanded the 2SGA

for the FJSP model to incorporate multiple (up to 10) objectives. Numerical examples

are presented to illustrate the greater need for multi-objective optimization in larger

problems due to their interaction and relevance in providing better solution quality.

The results show the strong capability of 2SGA to jointly optimize all the objective

functions and how it outperforms the RGA. However, 2SGA is not able to minimize the

Earliness/Tardiness (E/T) objectives due to its greedy nature. This can be a pragmatic

issue for 2SGA since job shops usually receive orders with due dates. So we have modified

the 2SGA solution encoding further to include the intentional delay of the jobs and

illustrated how it could address comprehensive multi-objective E/T FJSPs.
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Chapter 1

Introduction

1.1. Introduction

Manufacturing system transition was the main driving factor in starting the Industrial

Revolution in the late 18th century with the invention of machines and the use of steam

power. Manufacturing systems still play a vital role in our global economy and liveli-

hood. According to World Bank (2020), in the last twenty years, the manufacturing

sector represents 15.5% to 17.5% of the global Gross Domestic Product (GDP). This

does not mean that it was always easy for manufacturing to maintain their high share of

GDP. Nowadays, manufacturing is facing many challenges to meet increasing customers’

demands for more customized and complicated products that are available upon request.

Following the fundamental law of supply and demand, the continuously changing cus-

tomer demands for highly customized and low-priced products forced industries to adopt

more flexible and efficient manufacturing systems. The conventional mass production

methods introduced during the Second Industrial Revolution, along with traditional

assembly line, setup structure, and planning mechanism, has changed to Flexible Man-

ufacturing Systems or FMS that uses advanced computerized multi-purpose machines.

FMS system enables a manufacturing company to produce more variety of products in

smaller batch sizes with a shorter lead time. It could keep up with the dynamic nature

of customers’ demands and global competition for quicker lead time and lower prices.
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ElMaraghy (2005) claims manufacturing adopted at least 10 types of flexibility strategies

as listed below, although some are inter-related:

1. Machine Flexibility: Machines with the capability of performing various opera-

tions,

2. Routing Flexibility: More than one feasible manufacturing routing for products,

3. Material Handling Flexibility: More possible paths between machines,

4. Operational Flexibility: Different processing plans for part production,

5. Process Flexibility: Changing between the production of different part types with-

out major set-up changes, i.e. part-mix flexibility,

6. Product Flexibility: Ease (time and cost) of introducing products into an existing

product mix, contributing to agility,

7. Volume Flexibility: Ability to change production volume profitably within pro-

duction capacity,

8. Expansion Flexibility: Ease (effort and cost) of increasing capacity and/or capa-

bility through physical changes to the system,

9. Control Program Flexibility: Ability to run virtually uninterrupted (e.g. during

the second and third shifts) due to the availability of intelligent machines and

system control software,

10. Production Flexibility: Number of all part types that can be produced without

adding major capital equipment.

Classic Job Shop Manufacturing is based on the concept of having “Machine Flex-

ibility” that enables a manufacturing system to produce a variety of custom products in

smaller batches. In this research, we focus on Flexible Job Shop Manufacturing System

which incorporated “machine flexibility” with “routing flexibility”. Routing Flexibil-

ity provides the possibility of alternative machines (which are already flexible and can

handle different operations) for processing a particular product. However, this level of

flexibility introduces a new level of complexity in resource sharing and production plan-

ning. Specifically scheduling becomes a more challenging problem since it is allocating

several tasks to limited resources to optimize certain performance criteria. Depending
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on the scheduling problem size, such as the number of tasks and resources, this task can

turn into the most time-consuming and challenging activity within the enterprise. We

should also consider that scheduling determines the performance of the whole manufac-

turing system. So in other words, to take full advantage of the flexibility of the FMS

and to produce more variety of products in smaller batch sizes and shorter lead times,

the company needs to develop an efficient, effective, and accurate scheduling system.

This makes scheduling an extremely important part of any manufacturing system to

the extent that production scheduling has become a necessity for the survival of manu-

facturing firms in today’s competitive marketplace. The performance of the FMS with

an inefficient scheduling system may be significantly low and even can take little ad-

vantage of its flexibility features. A poor scheduling system will also cause inefficient

resource allocation, either over-loaded or idle capacity. This can result in a long pro-

duction lead time, high cost of production, unreliable due date commitments, customer

dissatisfaction, and a loss of market share, among other problems.

1.2. Job Shop Scheduling

1.2.1. Scheduling

Scheduling can be defined as the critical decision-making process of allocating available

and limited resources to perform a set of tasks over a period of time in order to produce

the desired outputs. In manufacturing systems, scheduling can be described as allocating

production tasks (i.e., jobs, parts, and operations) to manufacturing resources (e.g., ma-

chines and operators) to be processed optimally. Every production scheduling problem

aims to optimize one or a combination of performance indicators, such as minimizing the

maximum time required for completing all operations (makespan), maximum tardiness

(lateness), maximum earliness, maximum machine load, and so on. Hence, scheduling

significantly impacts many manufacturing performance criteria, such as machine uti-

lization, manufacturing lead times, inventory costs, meeting due dates, and customer

satisfaction. In other words, production scheduling is a critical decision-making process
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that plays an essential role in improving manufacturing productivity in today’s com-

petitive manufacturing world. Therefore, efficient, effective, and accurate scheduling is

vital to achieving the best results. Indeed, it ultimately can determine the operational

performance of a manufacturing system.

To any optimization problem, a feasible solution is an assignment of values to the

variables in a way that satisfies all the constraint equations. The objective function

value for this given variable assignment is called the objective function value. The

optimal solution is a feasible set of variable values (solution) that results in the best

objective function value. There are several well-defined procedure solution methods or

algorithms for finding a good or optimum feasible solution for an optimization problem.

The algorithm is called exact if it guarantees the optimal solution, no matter how lengthy

or complicated the calculation is. Otherwise, it is called approximate or heuristic, which

can guarantee only obtaining reasonable, feasible solutions.

Researchers have developed numerous techniques to solve scheduling problems.

These techniques can be categorized into “Exact Algorithms”, “Dispatching Rules”,

“Metaheuristics, and Artificial Intelligence”. There are several Exact algorithms or

mathematical techniques like linear programming, dynamic programming, or branch and

bound algorithms that guarantee the global optimal solution. Unfortunately, they are

all computationally intensive to the point that only makes them practical for small-size

FJSPs. This is due to the flexibility of FJSP, which creates a large number of alterna-

tive solutions that consequently make the search space of these problems substantial.

To avoid solving optimization problems, there are also scheduling methodologies called

Dispatching Rules that are used to prioritize and release the jobs to the shop floor or

a waiting machine. They follow simple decision factors such as “Shortest Processing

Time (SPT)”, “First In First Out(FIFO)”, “Longest Processing Time (LPT)”, “Min-

imal Slack Time” or “Earliest Due Date” or a complex combination of these factors.

Unlike exact algorithms, dispatching rules are pretty straightforward and need mini-

mum computational effort, but they cannot guarantee to achieve the optimal solution or
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even a near-optimum solution. Metaheuristic algorithms (i.e., Genetic Algorithm, Sim-

ulated Annealing, Tabu search, or Ant Colony) and Artificial Intelligence Algorithms

such as Neural Networks or Fuzzy Logic have been proven to be the best way to address

scheduling problems. Although these algorithms cannot guarantee the optimal solution,

researchers have shown that these algorithms achieve near-to-optimum (sometimes the

optimal) solutions in a very reasonable computational time. They can easily be scaled

and solve significant and even real scheduling problems.

It was only in the mid-1950s when Johnson (1954) introduced the first systematic

approach to scheduling problems for two machines (or for three machines with some

restrictions). The only reason for considering only a two-machine scenario was that

production scheduling problems involve many variables and constraints and is considered

one of the very difficult combinatorial optimization problems. In the simplest case,

combinatorial problems mean that some or all of the decision variables take only discrete

values. Most of the scheduling problems even fall into the class of Non-deterministic

Polynomial-time hard (NP-hard) combinatorial problems. The name of NP-hard or

non-deterministic polynomial-time hard roots in the fact that exact algorithms cannot

guarantee to find their optimum solutions in finite time. To this end, it is not surprising

to know that scheduling is an active field in operations research, and a countless number

of articles can be found in the area dealing with wide variety of scheduling problems.

1.2.2. JSP and FJSP

Among all the different scheduling problems, the Job shop Scheduling Problem (JSP)

is one of the most popular and difficult optimization problems. A classic JSP consists

of scheduling a given number of jobs on a set of dissimilar machines. Each job needs

to be processed through a predefined sequence of operations (routing) and designated

machines. Since each operation only has a single designated machine, JSP solutions only

consist of sequencing and starting time of operations on each machine which is called the

sequencing problem. JSP addresses environments with a low-volume and high-variety of

products or services and has a wide variety of applications, from information services to
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manufacturing systems. In order to explain it in more detail, we can consider a classical

JSP that consists of n jobs with Oj number of operations that need to be processed

on m unrelated machines according to a predefined and fixed routing. In other words,

routing or the order of operations to complete the product has been specified, and there

is one and only one machine that can process each operation. So JSP only needs to solve

the “sequencing problem” to determine each operation’s sequence and starting times on

its eligible machine. Since most of the JSPs are NP-hard problems, it has been a very

active field of scheduling research and has been studied for over six decades.

JSP addresses sequencing decisions of manufacturing settings where products have

a fixed routing (a set of specific machines to process the sequence of operations) that dif-

fers from one product to the other. By removing the limitation of fixed routing, Brucker

and Schlie (1990) introduced the Flexible Job shop Scheduling Problem (FJSP) in 1990

as an extension of classic JSP in which each operation has an eligible machine set with

the same or different process times. A classic FJSP can be described as follows: there

are m different machines (M1,M2, . . .Mm) and also n independent jobs (J1, J2, . . . , Jn)

where each job contains Oj number of operations. Each operation could be processed on

different machines with different processing times. Processing time of operation o of job

j on machine m can be indicated as T(o,j,m) and is given in advance along with routing

of jobs (the sequence of processes).

While this “routing flexibility” can result in a better schedule by reducing machine

bottlenecks, it also adds the routing problem (assigning each operation to one of its al-

ternative machines) to the original JSP’s sequencing problem (prioritizing operations on

each machine). Obviously, FJSPs like JSPs are classified as NP-hard problems (Ishikawa

et al. (2015)). Hierarchical and Integrated (concurrent) are two different approaches for

solving “routing” and “sequencing” problems of the FJSP (Brandimarte (1993)). The

integrated approach is based on the idea of solving both sub-problems simultaneously,

while in the hierarchical approach, FJSP is decomposed into subproblems in order to

reduce its complexity. These subproblems will be solved separately with several ways

of communication among different levels. The decomposition can be based on different
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approaches like the separation of constraints, but in the simplest form is separating the

machine routing and operation sequencing problems (Brandimarte (1993)). In general

hierarchical approach creates quick results, but its solution may not be optimal due to

the influence of the different levels on each other (Xue et al. (2011)).

Having two interactive problems, routing and sequencing problems, makes FJSP

even more intractable than JSP (more NP-hard too), meaning computation time in-

creases exponentially when problem size increases. To illustrate the complexity of

scheduling problems, Framinan et al. (2014) calculated the computation time of finding

the solution with minimum total tardiness of a simple model with 1, 2, ..., 30 jobs on

only a single machine. There would be 1! , 2! , ..., 30! possible solutions as a function

of the number of jobs. In general, a problem with n jobs and m machines will have

(n! )m possible sequences. They considered two computers capable of doing one billion

basic operations per second (the equivalent of a CPU running at 1.0GHz) and another

one that is 5 million times faster and running at 5PHz (way beyond current computers’

capability that rarely operates at frequencies higher than 6 GHz). For simplicity, they

also assumed one full schedule could be calculated in just one basic operation (normally,

n individual tardiness has to be added to calculate the total tardiness). Both comput-

ers solve problems with up to 12 jobs in less than half a second, but increasing to 15

jobs (a 25% increase) results in a CPU time of 21.79 min for the slow computer (2, 730

times slower). Bigger size problems quickly turn infeasible for the slow computer, 99

hrs. for 17 jobs, 4 years for 19 jobs, and solving a problem with 30 job needs over 600

thousands time longer than “Age of the Universe”, estimated to be 14 billion years.

Even a 5 million times faster computer can practically solve problems of up to only 21

jobs that take less than 3 hrs. However, solving a problem with 30 jobs takes about 1.7

billion years. Needless to say, this means realistically sized problems are entirely out

of the question, like a job shop with 50 jobs and 10 machines that will have (50! )10 =

6.77 ∗ 10644 possible sequences that is an extremely huge number (the number of atoms

in the observable universe is estimated to be between 1078 and 1080).

As it was said, each scheduling problem aims to optimize one or a set of objectives.
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There are many objective functions for FJSP in the literature, including minimizing

maximum completion time (makespan), minimizing machine total processing time/flow

time, minimizing maximum machine load, minimizing maximum earliness/ tardiness,

minimizing total Work in Progress (WIP), and maximizing equipment utilization rate.

Minimizing maximum completion time (makespan) is minimizing the completion time

of the last operation of the last job and is a primary measure of many scheduling sys-

tems. Makespan has been reported as the most popular performance measure for FJSP

scheduling problems. Since at FJSPs, machines’ loads are different according to the

scheduling scheme, minimizing the maximum machine load and total workload of ma-

chines are other common objectives. A good scheduling algorithm should reduce the

maximum load of machines by balancing operation assignments between machines and

improving their utilization. In chapter 4, we will explore a multi-objective FJSP and

show how different objectives can adversely affect each other. Also, we will demonstrate

how interaction and tradeoffs between objectives increase with increasing the problem

size.

1.3. Genetic Algorithm for FJSP

Genetic algorithm (GA) belongs to a larger class of Evolutionary Algorithms (EA) that

use the evolution mechanism of the biological community and have a high degree of

parallelism, randomness, adaptiveness, and other advantages of a combinatorial opti-

mization search method. GA was initially proposed by Taylor (1994) and is based on

Darwin’s evolution theory and Mendel’s genetic theory. GA combines Darwin’s the-

ory of the “natural selection: survival of the fittest” principle with a structured and

randomized offspring creation.

GA starts from an initial population of chromosomes (solutions) and follows a

structured but randomized algorithm to populate a new generation of chromosomes

(solutions) that are more fit (i.e., better makespan in FJSP) than their parents. This

evolution continues until the stop condition is met (usually the number of iterations)
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and the fittest chromosome is selected as the best solution. Essential parts of any

standard GA are chromosome encoding (the way each possible solution is represented),

reproduction operators (selection, crossover, and mutation operators), fitness function

(suitability of each solution in terms of objective function value), and GA parameters

(like population size, stop condition, mutation, and crossover probability). Based on

Gen and Lin (2014), five basic components of GA are:

• Solution representation or chromosome encoding,

• Initial population generation mechanism,

• Fitness function to determine the suitability of each solution,

• Genetic operators that generate offspring (selection, crossover, and mutation)

• Genetic parameter values (like population size, probabilities of applying genetic

operators, etc.)

In its simplest form, GA starts by randomly creating an initial population of

chromosomes (possible feasible problem solutions) based on the encoding process that

converts the possible solution to a chromosome structure. Then GA selection operators

randomly select some chromosomes as parents and put them in a mating pool. The

selection operators give higher chances to more fit chromosomes according to the sur-

vival of the fittest principle. These chromosomes from the mating pool randomly will

pair off and use crossover operators to create offspring or the next generation of the

chromosomes, which are usually more fit. The offspring may also go through mutation

operations to increase the chance of exploring new areas of solution space. The popula-

tion of chromosomes evolves consecutively until the stopping condition is satisfied. Then

the chromosome with the best fitness value is selected that will create the best solution

according to the decoding procedure. GA is naturally parallel because it evaluates and

improves a population of solutions. Here we will introduce the basics of the application

of the Genetic Algorithm to address JSP and FJSP. Section 3.3 will provide a more

detailed description while introducing the Two-Stage GA for FJSP.

9



Chapter 1. Introduction

GA Solution Encoding and Genetic Operators

Chromosome encoding is an essential part of the GA process. In fact, the success of

the GA is greatly affected by a proper encoding solution. Researchers have used several

encoding techniques to solve JSP and FJSP with GA. In section 3.3.1, we discussed the

common solution encodings that have been widely used in the literature to solve FJSPs.

Among all these variants, the gene structure of (j, o,m) is a prevalent form that we

adopted in our novel Two-Stage GA (described in chapter 3) as the core algorithm of

this research.

Additionally, we modified this solution encoding structure in chapters 4 and 5

to enable the GA process to address the FJSP problems with lot streaming and earli-

ness/tardiness scheduling (by adding the intentional delay of the jobs) respectively. This

chromosome encoding is an operation-based gene structure that takes a triple (j, o,m)

where j is the job number, o is the progressive number of the operation within job j, and

m is the machine assigned to that operation. This solution representation combines the

machine assignment decision with the sequence decision in a single gene encoding, cov-

ering the whole solution space. This effective representation reduces memory usage and

facilitates more efficient GA operators. The length of the chromosome is equal to the

total number of operations to be scheduled. This representation has another important

feature that allows it to model alternative routing of the problem by simply changing

the index m. Our Two-Stage Genetic Algorithm uses this structure in its second stage,

while the solution encoding of the first stage does not explicitly encode operations as-

signment and sequencing. The first stage uses a greedy approach to select the machine

with the best completion time, which is described in more detail in chapter 3.

GA uses several methodologies called genetic operators that are inspired by natu-

ral evolution to evolve and produce the next generation. Genetic operators are usually

categorized as selection, crossover, and mutation operators and are used to evolve the

population by creating more fit chromosomes (solutions). These GA operators, along

with GA parameters (i.e., population size, crossover and mutation probability rate, and

termination criteria), significantly affect the GA performance. Selection operators choose
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chromosomes and put them in a reproduction (mating) pool. There are three popular

selection operators: (1) proportional, (2) linear ranking, and (3) tournament selections.

In proportionate fitness selection or roulette wheel selection, each chromosome is as-

signed a selection probability equal to its fitness value divided by the total fitness of all

chromosomes. Similar to the gaming roulette wheel, a chromosome with a higher fitness

value will be assigned a bigger sector of the wheel that is associated with a higher proba-

bility of selection. Then a random number determines which chromosome to be selected

to go into the mating pool. Since chromosomes or solutions are ranked according to

their fitness, solutions with better fitness values have higher chances of being selected

for mating and have higher chances for reproduction. Although this is the basis of the

GA and evaluation theory of “natural selection: survival of the fittest” and helps the

algorithm to explore promising areas of the solution space more than others, it also can

cause the algorithm to converge prematurely to a local optimum and the algorithm to

be trapped in a local minimum specifically. In a linear ranking selection, the individu-

als in the population are assigned ranks based on a sorted sequence of their objective

function values and then selected based on a probability function, sometimes similar

to roulette wheel selection. At tournament selection, k (tournament size) chromosomes

are randomly selected to enter the tournament. Then the chromosome with the highest

fitness value is selected as the winner and will be added to the reproduction pool. This

process continues until the number of individuals in the reproduction pool equals the

population size. Roulette wheel selection is less popular than it was in the past due

to the chance of premature convergence if some “super individuals” exist. However,

in the tournament selection that we selected for this research, there is no arithmetical

computation based on the fitness value. Hence, even “weaker” chromosomes have some

chance to be selected to lessen the chance of GA permutation. In Section 4.3.5, we

presented the mathematical formulation of these selection operators and then, in section

4.4.3, performed comparative empirical studies which indicate the better performance

of tournament selection for the proposed problem.

11



Chapter 1. Introduction

After forming the reproduction pool, GA applies crossover and/or mutation op-

erators to create the next generation. The crossover chromosomes generate two chil-

dren from two randomly selected parents and are paired from the reproduction pool.

Crossover operators continue to apply until they create the same number of children

equal to the number of parents. Then mutation operators will apply to the children

according to mutation probability. Unlike crossover operators, which create two chil-

dren from two parents, a mutation operator only applies and reforms one chromosome.

Mutation operators introduce extra variability and help GA procedure explore a new

solution space area. A simplified GA procedure has been illustrated in Figure 1.1.

Step 1. Create an initial population of random chromosomes (solu-
tions)

Step 2. While termination condition has not met (like no. of gener-
ations) otherwise go to 8

Step 3. Evaluate the fitness of each chromosome of the population

Step 4. Produce new generation

Step 5. Select two parents, run crossover operators, generate two
offspring

Step 6. Select one chromosome, run mutation, generate one offspring

Step 7. Replace old generation with new offspring and go to Step 2

Step 8. Report the chromosome with the best fitness (function
value)

Figure 1.1: Simplified GA procedure

To improve GA performance, researchers have developed several strategies that

can be very sophisticated. Among them, improving GA operators and enhancing GA

search mechanisms are two techniques that, while highly effective in improving GA

performance, are not too complicated. Selecting/creating suitable genetic operators is

not only very essential for the success of any GA in gradually improving the fitness values.

It also needs to ensure that the offspring do not become infeasible. To explain, we need to

note that GA operators are changing the chromosome, so they can easily create infeasible
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offspring, for example, due to violating the precedence constraints among operations of

the same job. To fix these issues, there are two general approaches: either a repair or

correction mechanism has to be defined and applied on infeasible offspring, or define the

operators in such a way that they do not create infeasible solutions at all. Obviously,

having such well-defined GA operators is more favorable since the repair procedure adds

to the computational time. Since some FJSP studies divided the chromosome into two

parts where one part defines the operation sequencing, and the other defines the machine

assignment, they have to have different GA operators to apply to each part too. This

way, they can avoid producing infeasible chromosomes easier. However, this chromosome

encoding is more complicated than the gene of three triples (job, operation, machine)

representation, in addition to the need for different sets of GA operators, which in turn

increases the computational time. In this research, we have carefully selected (or created)

several GA operators that respect all the constraints. Hence, no infeasible chromosomes

are created, and no repairing mechanism is needed. The GA operators of each developed

FJSP model are described in detail in the corresponding chapters of 3,4, and 5.

1.4. Research Structure and Motivation

The auther has worked with several local and international industries based on the job

shop manufacturing concept producing many products in small batches with frequent

changes in product mix and demand. Although several of these companies implemented

Enterprise Resource Planning (ERP) systems, still their production scheduling heav-

ily relied on manual planning, using spreadsheets and several meetings. Therefore,

the author is motivated to contribute to scheduling knowledge to help the Job Shop

Manufacturing companies. This section describes the research objectives, methodology,

structure, and novelty.
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1.4.1. Aim and Objective

Real-world scheduling problems are incredibly different from conventional research prob-

lems and are often very complicated. Çaliş and Bulkan (2015) pointed out that only

8% of published JSP with AI techniques papers between 1997 and 2012 have addressed

industrial cases, and the rest just focused on algorithm development. One of the main

contributing factors to this gap is the number of impractical assumptions that scheduling

studies are considering in order to simplify the problem.

In this thesis, we developed a highly efficient GA approach that is able to solve

more complex FJSP with less limitation and reaches better solutions in a shorter com-

putational time, and then address the flexible job-shop scheduling problems with several

realistic features. The objectives of this research are listed below:

• Developing a high-performance Two-Stage GA model for FJSP,

• Implementing the two-stage approach on more comprehensive FJSPs that include

attached or detached sequence-dependent setup, machine release dates, and oper-

ation time lag,

• Extending the single objective FJSP to a multi-objective model and addressing it

by the Two-Stage GA,

• Solving lot streaming (splitting the job into sublots) by the Two-Stage GA,

• Including product assembly structure: subassembly and final assembly jobs,

• Permitting outsourcing of some operations,

• Adding intentional delay to address earliness and tardiness objectives for the jobs

with due dates,

• Concluding the superiority of the Two-Stage GA in addressing all these compre-

hensive FJSPs.

1.4.2. Methodologies and Structure

In this research, we first developed a highly effective Two-Stage GA approach to solve

FJSP and illustrated how it outperforms regular GA for FJSP found in the literature.
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Then we implemented the Two-Stage GA to solve FJSPs with several features to rep-

resent the FJSP in the real world better. We also utilized the Two-Stage to address

FJSPs with multi-objective functions, including earliness and tardiness functions. This

section briefly describes these developed models and the research structure.

In chapter 3, we present the novel Two-Stage GA approach and evaluate its perfor-

mance by presenting several numerical examples as it was initially published in Rooyani

and Defersha (2019) to solve the classic FJSP. Then we present an implementation of

the Two-Stage GA to solve a more comprehensive FJSP model with attached or de-

tached sequence-dependent setup, machine release date, and operation lag time that is

published in Defersha and Rooyani (2020). Chapter 4 includes the extended model of

chapter 3 considering the multi-objective function (10 objectives) and lot-streaming that

is published under Rooyani and Defersha (2022). In chapter 5, we enable the Two-Stage

GA to address earliness and tardiness scheduling by adding the intentional delay mech-

anism to the chromosome encoding. We also included subassembly requirements and

outsourcing options to the model of chapter 3. In this research, we used C++ on Mi-

crosoft Visual Studio Platform to code the two-staged GA and all the extended models

and sample problem generators. To solve mathematical models and linear programming,

we have utilized Lingo.

Two-Stage Genetic Algorithm

Genetic Algorithm (GA) is the most popular technique for solving FJSP due to its

many advantages and capabilities. To improve the performance of GA methodology

for solving FJSPs, we developed a Two-Stage Genetic Algorithm with a unique and

greedy mechanism for machine assignment in the first stage. In the first stage, the

solution encoding only dictates the operation sequence for machine assignment. Then

for each operation, the machine that can complete the operation the soonest is selected

by considering the processing time and operations that are already assigned to this

machine.
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The second stage, starting from the solution population of the first stage, fol-

lows the typical approach of GA for FJSP which the GA determines both operation

sequencing and machine assignment. This enables the algorithm to search the entire

solution space by including solutions that might have been excluded because of the

greedy nature of the first stage. We demonstrated via many numerical studies that we

indeed transformed this simple idea into an algorithm that can potentially challenge

future research in algorithm development for FJSP, particularly when solving large-size

problems. This approach has been initially reported and published at Rooyani and De-

fersha (2019). The next step was implementing the Two-Stage GA on the FJSP model

of Defersha and Chen (2010b), which has already incorporated attached or detached

sequence-dependent setup, machine release dates, and operation time lag requirements

into the regular FJSP. We also compared Two-Stage GA performance with GA paral-

lel computation on 48 CPUs. Although parallel computation is known as a promising

performance improvement for GA, it was interesting to find out that the Two-Stage GA

running on a single CPU outperforms the parallel version of the regular GA on 48 CPUs

both in terms of convergence speed and final solution quality. The result was another

proof of the superiority of the Two-Stage GA. This work is reported at Defersha and

Rooyani (2020) and has already attracted the attention of many researchers.

Multi-Objective GA with Lot Streaming for FJSP

Like other optimization problems, every scheduling problem aims to optimize one or

more objectives, including makespan, mean and total tardiness, total completion time,

and so on. Among all scheduling objective functions, minimization of the maximum

completion time (makespan) has been reported as the most common objective function,

followed by minimization of the total tardiness. Most FJSP studies are single objectives.

Even studies with multi-objective functions have only considered one or two additional

performance metrics from a very limited list, such as machine workload and produc-

tion cost. However, real-world manufacturing systems cannot rely on these simplified

scheduling objectives. To lessen this gap, we extended the Two-Stage GA for FJSP to
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incorporate multiple (10) objectives. In addition to the initial model features (attached

or detached sequence dependent setup time, process lag time, and machine release date),

we extended the application of the algorithm to solve a lot streaming problem in FJSP.

As described in chapter 4 the objective function of the new model includes minimization

of (1) makespan, (2) maximum sublot flowtime, (3) total sublot flowtime, (4) maximum

job flowtime, (5) total job flowtime, (6) maximum sublot finish-time separation, (7) total

sublot finish-time separation, (8) maximum machine load, (9) total machine load, and

(10) maximum machine load difference.

Chapter 4 also includes many numerical studies to illustrate several features. All

ten objective function terms are illustrated using a small prototype problem to contrast

the importance of multi-objective optimization in small versus large-size problems. The

provided numerical examples also indicated the greater need for multi-objective opti-

mization in larger problems due to the interaction of the various objectives and their

importance in providing a better quality and more practical solution. The capability of

the Two-Stage Genetic Algorithm to jointly optimize all the objective function terms is

also evaluated. The quality of the initial population and the convergence behavior of the

Two-Stage Genetic Algorithm is contrasted against the regular genetic algorithm with

respect to each of the objective function terms. We have illustrated that the Two-Stage

GA can generate initial solutions that are highly improved in all of the objectives and

outperforms the regular GA in convergence speed and final solution quality in solving

the multi-objective FJSP lot streaming. This work has been published under Rooyani

and Defersha (2022).

Earliness/Tardiness Scheduling in the Presence of Assembly Requirements

and Outsourcing

As mentioned in the previous section, minimization of total tardiness is one of the most

common objective functions for FJSPs after makespan. This can be due to the fact

that receiving orders with due dates or promised shipping dates is prevalent in the job

shop industries. Not meeting these due dates may result in some sort of penalties or
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at least causes customer dissatisfaction that can result in the loss of future business

opportunities. Similarly, completing the job before its due date is not desirable either.

The company may not be allowed to ship the completed job order ahead of the planned

date and had to keep it as finished good inventory. This will cost the company, and

there is a damaging risk due to material handling and shelf life.

As a result, there is a whole group of Earliness and Tardiness (E/T) Scheduling

that tries to maximize “On-Time Completion” that includes minimization of “Earliness”

and “Tardiness” objective functions. In chapter 5, we will demonstrate that the Two-

Stage GA cannot address the minimization of Earliness and Tardiness objectives. So

we made some changes to the chromosome encoding to allow GA to intentionally delay

the starting of the jobs if needed. We have solved several examples and showed that

adding the intentional delay allows the Two-Stage GA to minimize E/T objectives while

maintaining its ability to minimize other objectives like makespan. The modified Two-

Stage GA presented in this chapter is a multi-objective scheduling that minimizes total

earliness and tardiness for the jobs that have due dates while minimizing the makespan

and total completion time for jobs with no due dates.

This chapter also addressed two other unrealistic assumptions of many FJSPs.

First, the classic FJSP assumes no relationship between the jobs, so they can be sched-

uled to start and finish independently. As a matter of fact, this is unlike real-world job

shops where most of the products have subassemblies in several levels. This means that

to start producing the final assembly product, all its subassembly jobs must be com-

pleted, but not necessarily simultaneously. Furthermore, products usually have more

than one level of subassemblies, so the sequence of job completion should start from the

lowest level of the product tree structure.

Secondly, most FJSPs assume all the operations can be done in-house. However,

in the real world, a job shop relies on outsourcing some production steps due to lacking

in-house capabilities or resource constraints. For example, a machine shop specializing

in CNC manufacturing relies on its vendors for welding or surface coating of its products.

Hence, in chapter 5, we expanded the FJSP model presented in chapter 3 with sequence
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dependent setup, machine release date, and lag time to address E/T scheduling with

outsourcing capability and multi-level subassembly structure.

1.4.3. Research Novelty

This research is unique and novel in many aspects. The developed Two-Stage GA

approach is unique and highly efficient and has already attracted the attention of several

researchers. This research is also trying to lessen the gap between FJSP research and the

real world by including several realistic features that are being missed by most studies.

For example, many scheduling algorithms in the literature consider only a single objective

function (usually makespan), while in this research, we considered multi-objective FJSPs

with up to 10 objective functions and provided rigorous numerical examples to study

their optimization behavior that to the best of our knowledge is unique. This FJSP

model also considers a sequence dependent setup that can be attached or detached,

machine release date, and process lag time, making it even more unique. Additionally,

we considered FJSPs with lot streaming, multi-level subassembly product structure, and

outsourcing capability, plus allowing the intentional delay at starting the jobs to address

E/T objectives.

1.4.4. Publications

Below is the list of publications as a result of this research:

1. An Efficient Two-Stage Genetic Algorithm for Flexible Job-Shop Scheduling (Rooy-

ani and Defersha (2019)),

2. An Efficient Two-Stage Genetic Algorithm for a Flexible Job-shop Scheduling

Problem with Sequence Dependent Attached/Detached Setup, Machine Release

Date and Lag-Time (Defersha and Rooyani (2020)),

3. A Two-Stage Multi-Objective Genetic Algorithm for a Flexible Job Shop Schedul-

ing Problem with Lot Streaming (Rooyani and Defersha (2022)),
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4. A Two-Stage GA to Address Earliness and Tardiness FJSP in the Presence of

Subassembly Requirements and Outsourcing Options (under preparation),

“An Efficient Two-Stage Genetic Algorithm for Flexible Job-Shop Scheduling” is

a conference paper presented at a well-regarded 9th IFAC Conference on Manufacturing

Modelling, Management and Control in 2019 at Berlin, Germany. This conference paper

was published by Elsevier Ltd. under Rooyani and Defersha (2019) and cited 16 times by

the time this thesis was finalized. The second paper, which is the core of this research, is

“An Efficient Two-Stage Genetic Algorithm for a Flexible Job-shop Scheduling Problem

with Sequence Dependent Attached/Detached Setup, Machine Release Date and Lag-

Time”. This paper is published by Computers & Industrial Engineering Journal under

Defersha and Rooyani (2020). This paper is cited 40 time in less than 3 years, referred

by Lei et al. (2022) as a “state-of-the-art meta-heuristic algorithm” who compared their

algorithm performance with ours. The third paper, “A Two-Stage Multi-Objective

Genetic Algorithm for a Flexible Job Shop Scheduling Problem with Lot Streaming”,

expands on the work of the second paper and is published in an open access journal

under Rooyani and Defersha (2022) to promote the research to a broader readership.

The fourth paper, “A Two-Stage GA to Address Earliness and Tardiness FJSP in the

Presence of Subassembly Requirements and Outsourcing Options”, is under preparation.

The remainder of this Ph.D. dissertation is organized as follows:

• Chapter 2 reviews the contemporary literature on the different features and objec-

tive functions of FJSP, solution methods, and GA for FJSP,

• Chapter 3 presents the Two-Stage GA model and evaluates its performance in

solving comprehensive FJSP model with attached or detached sequence-dependent

setup, machine release date, and lag time in addition to the classic FJSP bench-

mark problems,

• Chapter 4 includes the extended model of chapter 3 with considering the multi-

objective (10 objective functions) lot-streaming FJSP with rigorous numerical ex-

amples,
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• Chapter 5 presents the modified model of chapter 3 to address the earliness and

tardiness objectives in the presence of subassembly requirements and outsourcing

options,

• Finally, the research conclusion and future research are provided in chapter 6.
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Chapter 2

Literature Review

2.1. Introduction

As described in Chapter 1, Flexible Job Shops are able to produce more variety of prod-

ucts in smaller batch sizes and shorter lead times than assembly lines. In order to take

full advantage of these capabilities, the company needs to develop an effective scheduling

system. So production scheduling plays a vital role in improving manufacturing produc-

tivity in today’s competitive manufacturing world. Hence, developing efficient, effective,

and accurate scheduling becomes crucial in achieving the best results (Tamilarasi and

Anantha kumar (2010)). This makes scheduling an essential part of any manufactur-

ing company and, in general, any supply chain management system to the degree that

(Metaxiotis et al., 2003) state production scheduling has become necessary for the sur-

vival of manufacturing firms in today’s competitive marketplace. Indeed, scheduling

ultimately determines the operational performance of the manufacturing system (Wiers

and van der Schaaf (1997)).

Scheduling is defined by many researchers (like Demir and Kürşat Işleyen (2013)

and Bagheri and Zandieh (2011)) as a critical decision-making process of allocating

available and limited resources to perform a set of tasks over a period of time in order

to produce the desired outputs at the desired time. Allahverdi et al. (2008) state the

first systematic approach to scheduling problems was undertaken in the mid-1950s by
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Johnson (1954) who proposed optimal scheduling for two machines (also for three ma-

chines with some restrictions). However, Johnson (1954) considered only a two-machine

scenario since the production scheduling optimization problem concerns a large number

of variables and constraints. In fact, production scheduling is considered one of the very

difficult combinatorial optimization problems known to the research community, which

most of them fall into the class of non-deterministic polynomial-time hard (NP-hard)

combinatorial problems (Gen and Lin (2014)). They are called NP-hard since exact

algorithms cannot guarantee finding their optimum solutions in a finite time. To this

end, scheduling has become an active field in operations research, and countless articles

can be found in the area dealing with a wide variety of scheduling problems.

Nevertheless, it is surprising to know that there are not many researchers who

addressed practical problems. Fuchigami and Rangel (2018) has performed an interesting

literature review on practical scheduling research and case studies published between

1992 to 2016. After systematic research among hundreds of scheduling studies, they have

only found 46 practical papers. Publication years of these papers indicate an increasing

interest in this field, where 6 and 9 out of 46 papers were published in 2015 and 2016,

respectively. Among different manufacturing layouts, 31 papers (67%) have addressed

flow shop (including hybrid flow shop), followed by job shop (classic and flexible) with

10 cases (22%).

Among all the different scheduling problems, the Classic and Flexible Job shop

Scheduling Problem (JSP and FJSP) is one of the most popular also most difficult

optimization problems (Demir and Kürşat Işleyen (2013)). For the first time, Brucker

and Schlie (1990) proposed a polynomial algorithm to solve an FJSP with only two jobs.

Shi et al. (2018) reviewed several Intelligent Algorithms for Solving FJSP and concluded

that researchers are usually more enthusiastic about applying sophisticated improvement

strategies. As a result, algorithms are becoming more complicated, although there are

less complicated techniques to improve GA performance, like improving GA operators

or enhancing GA search mechanisms.

This chapter presents a brief literature review of the Flexible Job Shop Scheduling
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Problem concerning problem features, objective functions, and solution methods.

2.2. Flexible Job Shop Scheduling Problem Features

The classic Flexible Job Shop Scheduling Problem, as it initially appeared in Brucker and

Schlie (1990), involves a number of independent jobs and a number of machines where

each job has a certain number of operations to be processed in a fixed sequence. An

operation can be assigned to a machine from a set of available machines. Processing times

are known for every eligible pair of operations and machines, whereas setup time is not

considered or simply added together with processing time. The problem is determining

the operations’ assignment and sequencing to minimize makespan.

Lal and Durai (2014) listed important hypotheses in the FJSP as follow:

• All the jobs and machines are ready at time zero,

• Every job has a predefined routing (operation sequence),

• Each machine can only perform one operation at a time,

• The operation processing is non-preemptive (cannot be stopped after starting),

• There is no relation between jobs (independent of each other); Similarly, machines

can work independently of each other,

• There is no setup time before any operation on any machine

• The moving time between machines is not considered (negligible).

As can be seen, the classic FJSP is very basic, and it is hard to imagine finding

such a simple real-life job shop manufacturing system. Thus, many variations of FJSPs

are addressed in the literature to incorporate features relevant to actual industrial ap-

plications. As discussed in Chapter 1, one of the main objectives of this research is

to remove several of these hypotheses to make it more practical to address real-world

scheduling problems in flexible job shop manufacturing systems. Chaudhry and Khan

(2016), Amjad et al. (2018), Xie et al. (2019) and Gao et al. (2019) have presented exten-

sive literature reviews on FJSP. In this research, the machines do not have to be ready

at time zero (machine release dates), the job can be split into batches and processed
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in sublots (lot streaming), jobs can be related (subassembly and sequence-dependent

setup), machines can have attached or detached setup time, moving between operations

may need some delay time (time lag) and some operations can be outsourced.

In this section, we present a brief literature review of FJSP problem features that

are common in all our research models before we provide more details of this research

in chapters 3, 4 and 5.

MacCarthy and Liu (1993) have studied the “gap” between theory and practice of

scheduling and concluded that classical scheduling has a very limited view of the total

scheduling environment. In a quantitative study of scheduling studies carried out by

Reisman et al. (1997), from a total of 184 reviewed papers, only 5 (less than 3%) dealt

with realistic production settings. A more recent study done by Chaudhry and Khan

(2016) reports only 12 FJSP papers (6.28%) out of 191 FJSP papers have considered

industrial applications, and the other 179 papers (93.72%) were pure research-oriented

and algorithm development. Also, they pointed out that most researchers just considered

a simple FJSP, and only 70 papers (35.53%) considered different scenarios such as setup

time, transportation times, maintenance, machine breakdown, job/machine ready times,

fuzzy/uncertain processing times, overlapping operations, and re-entrant flexible job

shop.

Table 2.1 listed the scheduling constraints/features that have been considered by

researchers based on Fuchigami and Rangel (2018) survey. It also indicates that the

constraints which rule the real-world scheduling either have not been properly studied

or have not been studied at all. Setup time is one of the few important real-world man-

ufacturing factors that are being relatively well addressed in the scheduling literature.

Allahverdi et al. (2008) reviewed more than 300 scheduling papers with setup times or

costs published between 1999 to 2006. They noticed an increasing interest in scheduling

problems with setup times or costs. They also listed different manufacturing environ-

ments that studies considered, including single-machine, parallel-machine, flow shop, job

shop, and open shop problems with about 80, 70, 100, 20, and 10 papers, respectively.
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Table 2.1: List of constraints considered in practical scheduling researchers according to
Fuchigami and Rangel (2018) survey

Constraint No. of papers Percentage
Setup times 14 42.42%

No waiting between production stages 4 12.13%

Presence of eligible machines (resources that 3 9.09%
can only handle a specific set of jobs)

Different release dates & jobs dynamic arrival 3 9.09%

Batch processing scheduling 2 6.06%

Possibility of returning jobs to previous stages 2 6.06%

Adjacent constraint (no in parallel jobs execution) 2 6.06%

Blocking constraint (no intermediate storage) 1 3.03%

Presence of job availabilities intervals (the times 1 3.03%
when job processing is permitted)

The learning effect (processing time depends 1 3.03%
on the job position in the sequence)

Total 33 100%
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2.2.1. Machine Release Date, Lag Time and Sequence Depen-

dent Setup Time

Sequence dependent setup time is one of the most important setup-relevant features.

The importance of this feature in manufacturing was noted well before the appearance of

FJSP in literature (see for instance, Conway et al. (1967), Panwalkar et al. (1973), Baker

(1974) and Wortman (1992)). Panwalkar et al. (1973) stated that sequence dependent

setup in job scheduling is very common. Disregarding this feature could hinder manufac-

turers’ competitive advantage (Wortman, 1992). However, its consideration was mainly

limited to flow shop scheduling. In the past few decades, a considerable number of pa-

pers dealing with sequence dependent setup in FJSP were published. Another attribute

of setup is the nature of being attached (or non-anticipatory: setup can be performed

once the job arrives) or detached (or anticipatory: setup can be performed before the job

arrival) based on technological requirements. Attached sequence dependent setup time

in FJSP were considered in Guimarães and Fernandes (2006), Saidi-Mehrabad and Fat-

tahi (2007), Bagheri and Zandieh (2011), Mousakhani (2013), Rossi (2014), and Kress

et al. (2019). However, the assumption of the attached setup may adversely affect solu-

tion quality as it hinders maximal concurrency (Zhang and Gu, 2009). Özgüven et al.

(2012) proposed two models: one with sequence dependent attached setup and the other

with detached setup, whereas Abdelmaguid (2015) proposed a model with only detached

setup time.

The assumption that all machines are available at time zero may not hold in

practice, unlike the way classic FJSPs assumed. Instead, machines can have different

release dates, at which time they will be free from the previous schedule. Additionally,

some operations may need lag time, like for drying, cooling, cleaning, or other ancillary

operations, before they can advance to the next operation. In this research, we started

from the model proposed by Defersha and Chen (2010b), which already has all these

features as described below:

• Machines can have a “Release Date/Time”,
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• There is a possibility for “Lag Time” after each operation,

• Operations can have “Setup Time” that is “Sequence Dependent” meaning it de-

pends on the previous operation that was completed on the same machine,

• The setup of each operation can be either “Attached” or “Detached” based on

technological requirements.

2.2.2. Lot Streaming

Lot streaming is a technique that splits a production lot of a job into several indepen-

dent sublots and allows a sublot to be transferred from one machine to the next without

waiting for the other sublots. In doing so, it enables the simultaneous processing of

the sublots of a given job on multiple machines, thereby reducing the completion time

of the job. The approach has been used as a strategy for a time-based competition in

today’s global market (Chang and Chiu, 2005). Even the Lean Manufacturing method-

ology emphasizes the “one-piece-flow” concept to improve productivity. One-piece-flow

is basically splitting the batch as much as possible or theoretically to single pieces that

is lot streaming. Since its formal introduction in Reiter (1966), Lot streaming has been

an active topic of research, and many articles have been published on its application

for scheduling in a variety of shop configurations. The following subsections briefly re-

view recent articles on lot streaming based on those shop configurations. Comprehensive

reviews of publications on lot streaming can be found in Chang and Chiu (2005) and

Cheng et al. (2013).

Pure Flow Shop Lot Streaming (PFS-LS)

The majority of early publications on lot streaming are for pure flow shops. However,

recent literature indicates that PFS-LS still continues to attract the attention of the re-

search community. A tabu-search based three-stage algorithm for PFS-LS was developed

by Buscher and Shen (2008). The three stages of the algorithm involve (i) predetermin-

ing sublot sizes, (ii) developing a schedule based on the predetermined sublot sizes, and

(iii) varying the sizes of the sublots to improve the solution quality. Defersha and Chen
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(2010a) developed linear programming hybridized genetic algorithm with variable sublots

to minimize makespan. The authors demonstrated that in the presence of setup time,

variable sublot could bring substantial improvement in makespan compared to consistent

or equal-sized sublots. A genetic algorithm for PFS-LS with limited buffer capacities

and equal-sized sublots was developed by Ventura and Yoon (2013) to minimize earliness

and tardiness. Han et al. (2014) developed a multi-objective genetic algorithm (given

the number and size of sublots) to minimize the makespan, total flowtime, machine idle

time, and earliness time. Meng et al. (2018a) developed an improved migrant birds op-

timization for minimizing makespan with equal sublots and sequence dependant setup

time. A bee colony algorithm was proposed in Gong et al. (2018) to minimize makespan

and earliness in a blocking PFS-LS with no intermediate buffer between adjacent stages.

The author combined setup time with processing time and assumed that the number and

size of sublots are determined before scheduling. An exact heuristic based on dynamic

programming and Lagrangian relaxation was developed by Alfieri et al. (2021) for a

two-machine PFS-LS to minimize total flowtime. A convex programming technique for

a single-job two-machine PFS-LS was developed by Fang et al. (2021) with a due date

criterion and minimization of total energy consumption. The energy consumption was

optimized by varying the processing speed of the sublots. Wang et al. (2022) developed

an algorithm for PFS-LS with intermingling and variable sublots having detached setups

and demonstrated that the assumption of a detached setup could reduce makespan.

Hybrid Flow Shop Lot Streaming (HFS-LS)

Early and some recent publications in HFS-LS (e.g., Tsubone et al. (1996), Kim et al.

(1997), Zhang et al. (2005), Liu (2008), Cheng et al. (2016), and Wang et al. (2019)) are

limited to a special case where there are only two stages. To the best of our knowledge,

the first major research effort in lot streaming in the general hybrid flexible flow shop

with more than two stages was reported in Defersha and Chen (2012b). The authors

developed a parallel genetic algorithm with makespan criterion, sequence dependant

setup time, and machine release date. The authors also demonstrated that lot streaming
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could bring greater makespan reduction in hybrid flows shop than in pure flow shop as

the former allows the overlapping of operations not only across stages but also within

the parallel machines of a given stage. Nejati et al. (2014) developed a genetic algorithm

for HFS-LS in the presence of work-shift constraint. The authors assumed that the

processing of a sublot cannot be started if the remaining time of the work-shift does

not allow the sublot to be completed, in which case the sublot has to wait for the

next work-shift. Techniques based on migrant birds optimization were developed in

Zhang et al. (2017) and Wang et al. (2020) to minimize total flowtime and makespan,

respectively. Chen et al. (2020) proposed a genetic algorithm to minimize makespan

and energy utilization. The minimization of energy utilization is achieved via machine

selection, where each stage may have unrelated parallel machines with different power

consumption and processing speed. Energy-aware multi-objective HFS-LS was presented

in qing Li et al. (2020) to minimize average sojourn time, energy consumption, earliness,

and tardiness. Zhang et al. (2022) developed an evolutionary algorithm (with consistent

sublots) to minimize makespan and the number of sublots in the presence of setup and

transportation.

Classical Job Shop Lot Streaming (CJS-LS)

The very first paper in lot streaming (i.e., Reiter (1966)) was for a classical job shop

scheduling problem. However, research in CJS-LS is minimal. Hereunder, we reviewed

relatively recent articles in the area. Chan et al. (2008) and Wong et al. (2009) considered

CJS-LS with the due date criterion, where the authors assumed that all the sublots and

the jobs from the same product (with a due date) would be assembled at the end of

the line. Methodologies based on a generic algorithm were developed to minimize the

total cost of earliness, lateness, and setup in Chan et al. (2004) and Chan et al. (2009).

The authors stated that excessive lot splitting could increase setup costs. A CJS-LS

problem, where a customer order contains several jobs and shipment can happen only

when all the sublots of the jobs of a given order are completed, was considered in Liu

(2009). The authors developed a genetic algorithm to solve the considered problem to
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minimize makespan, lateness, and flowtime of finished goods. Liu et al. (2013) developed

methodologies to maximize the total values of the jobs. The authors assume that the

value of a job deteriorates exponentially over time, and the sooner the job completes, the

higher its value is. Lei and Guo (2013) develop a bee colony algorithm with makespan

criterion in the presence of a single transporter that can transfer one sublot at a time.

Flexible Job Shop Lot Streaming (FJS-LS)

Early research in job shop lot streaming was for the classical job shop. However, in

recent years, the research focus on job shop lot streaming has been in FJS-LS. Defer-

sha and Chen (2012a) developed a parallel genetic algorithm for FJS-LS with makespan

criterion considering sequence dependant setup time, attached and detached nature of se-

tups, machine release date, and lag time (a delay for cooling, drying, inspection, or other

ancillary operations). Demir and Işleyen (2014) and Meng et al. (2018b) implemented

FJS-LS through a successive partial transfer of a job from one machine to the next to

allow operation overlapping where sublots are not scheduled independently. Bożek and

Werner (2018) considered FJS-LS with variable sublot in the two-stage approach. In the

first stage, the makespan is minimized with the minimum sizes of the sublots defined for

the problem (larger number of sublots). In the second stage, the number of sublots is re-

duced without affecting makespan to minimize transportation costs. Defersha and Bayat

Movahed (2018) developed linear programming hybridized genetic algorithm where the

linear programming is periodically used to enhance promising solutions during the search

process. Novas (2019) developed a method based on constraint programming to solve

flexible job shop lot streaming with the makespan criterion. Daneshamooz et al. (2021)

proposed an algorithm based on variable neighborhood search to minimize makespan for

a lot streaming problem in a flexible job shop followed by a parallel assembly station. An

FJS-LS problem in an “Engineer to Order” environment was presented Li (2022). The

authors developed a mathematical model with variable sublot and makespan criterion

and then proposed a genetic algorithm based heuristic to solve the model effectively.

Though the above review indicates momentum in FJS-LS research, the total number of
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publications is minimal, and further research needs to be conducted.

2.2.3. Earliness and Tardiness (E/T ) scheduling

Most job shops follow the Make to Order (MTO) manufacturing strategy, where jobs are

built based on the customer’s order, usually including some sort of due date or customer-

required date. In these situations, if the job completes earlier than the customer’s

required date, they have to be stored as finished goods until their due dates, incurring the

inventory or “earliness costs”. Similarly, jobs that are finished after their due dates may

cause penalties or “tardiness costs”. Therefore, one of the main scheduling objectives in

these situations will be to meet the due dates of the respective jobs as closely as possible

to minimize the sum of earliness and tardiness costs.

Thus, Earliness and Tardiness (E/T) scheduling has become an important research

branch in the production scheduling field. Compared to the single machine, flow shop,

and parallel machines E/T scheduling problems, there are fewer studies related to job

shop scheduling with earliness and tardiness. (Baker and Scudder (1990)) reviewed dif-

ferent variations of the E/T studies since 1990, mainly single-machine and some parallel

machines. The (E/T) scheduling research in job shop scheduling started in the late 1980s

(Fox and Smith (1984) and (Sadeh and Fox (1996)). Other E/T job shop scheduling

studies are Sadeh (1993), who designed a micro-opportunistic factory scheduler to solve

a job shop earliness and tardiness scheduling problem by constraint satisfaction and op-

timization technology. Brandimarte (1993) has used Tabu Search to minimize makespan

and weighted tardiness in a flexible job shop. Bergamaschi et al. (1997) has used job

release times as model variables mainly because other variables depend on those times.

E/T scheduling, also called JIT-scheduling, since the main idea behind Just-In-

Time inventory and supply chain management is to minimize (even zero) inventory level

that, in fact, is the result of on-time completion or minimizing earliness and tardiness.

Lauff and Werner (2004) performed a survey on the scheduling studies with just-in-time

objectives. They reported that most of the papers till then (2004) are devoted to single-

machine problems, also, the work on multi-operation scheduling problems, such as shop
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scheduling problems, has begun only recently. Zambrano Rey et al. (2015) mentions that

the scheduling objective for just-in-time production is translated into minimization of the

due date mean-square deviation (MSD), quadratically penalizing inventory (earliness)

costs and backlogging (tardiness) costs.

Like other types of JSPs and FJSPs, the Genetic Algorithm has been extensively

used in solving E/T job shop scheduling problems. Sakawa and Kubota (2000) is one of

the first scholars who presented a genetic algorithm for a job shop scheduling problem

with fuzzy processing times and fuzzy due dates. Yang et al. (2010) and Yang et al.

(2012) presented an Enhanced Genetic Algorithm (EGA) to solve a classic job shop

scheduling (not flexible) problem with due dates and deadlines in the presence of tardi-

ness, earliness, and flowtime penalties. Unlike most studies, they differentiated between

due dates and deadlines and defined due dates as customer-desired completion that can

be violated at the cost of tardiness, while deadlines come from the manufacturer and

must be met. Their EGA utilizes operation-based chromosomes (since it has no ma-

chine assignment) and uses a three-stage decoder to fix the randomly generated initial

population. The three-stage decoding system first reduces tardiness based on due dates,

second ensures deadlines are not violated, and finally reduces earliness based on due

dates. Fakhrzad (2013) included sequence-dependent setup times in a classic (not flexi-

ble) job shop scheduling with multi-objectives of minimizing the makespan and sum of

the earliness and tardiness. They developed a multi-objective hybrid genetic algorithm

with a variable neighborhood search algorithm.

Other optimization techniques are also used to solve E/T job shop scheduling prob-

lems. Kelbel and Hanzálek (2011) developed two constraint programming algorithms

with earliness and tardiness penalties and solved an industrial case study of a lacquer

production scheduling and several job-shop scheduling randomly generated problems

with earliness/tardiness costs. Kusuma and Maruf (2016) developed an integer linear

programming model and used the branch and bound algorithm to minimize total tardi-

ness in a job shop environment. They assumed each job was processed and completed

in a single press machine (only one operation). They showed that this mathematical
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approach could provide the optimal solution for up to 70 jobs with a different processing

time from 16 machines.

Dispatching rules are another approach that is used to solve E/T job shop schedul-

ing. Chen and Matis (2013) developed a dispatching rule called the Weight Biased

Modified RRrule (WBMR) that minimizes the mean tardiness of weighted jobs in an

m-machine job shop. The WBMR is an extension of the RRrule with linear complex-

ity, considers weighted jobs, and allows for biasing the schedule towards meeting the

deadline of high-priority jobs. Liu and Hsu (2015) applied three existing dispatching

rules and introduced nine new rules based on different due date costs and the earliness

penalty to address a dynamic job shop scheduling problem with multiple delivery dates,

where the time between two consecutive delivery dates is a given constant. Ahmadian

and Salehipour (2021) presented a metaheuristic algorithm for the JIT–JSP, which de-

composes the problem into smaller sub-problems (i.e., smaller instances, each with a few

numbers of operations and machines) and then optimizes the sub-problems. Hajibabaei

and Behnamian (2021) investigated an FJSP with unrelated parallel machines and se-

quence dependent setup time by presenting a mixed-integer linear programming model

(for smaller problems) and a Tabu Search (TS) (for large-size instances) to minimize the

costs of makespan, total weighted tardiness, delivery time and inventory. Machine learn-

ing is also used, Chang et al. (2022) utilized a Deep Reinforcement Learning (DRL) to

solve the Dynamic FJSP (DFJSP) with random job arrival, with the goal of minimizing

penalties for earliness and tardiness.

Recently, Rolim and Nagano (2020) performed a survey that covers problems where

the common due date (window) is a given constraint as well as the ones where it is a deci-

sion variable. They classified 170 publications according to the objective function of the

problem, the due date or due window approach, and the complexity of the available al-

gorithms. They concluded a lot of effort was directed to combining machine scheduling

with other phenomena such as resource allocation, learning, deterioration, and rate-

modifying activities, especially in the single machine context. However, research on job

shops and open shops is still scarce. They also identified a recent trend of combining
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pure E/T scheduling problems with other phenomena such as resource allocation, de-

terioration, learning, machine disruption, maintenance, or even a combination of these

effects. For example, Wei et al. (2021) introduced the job shop scheduling problem

with the objectives of minimizing non-processing energy consumption, total weighted

tardiness and earliness, and makespan based on a machine status switching framework.

Also, Fan et al. (2021) addressed minimizing the mean weighted tardiness of a dynamic

job shop scheduling problem with Extended Technical Precedence Constraints (ETPC)

which is the precedence constraints existing between different jobs in contrast with con-

ventional precedence constraints between operations of the same job. They developed

a mathematical model to solve small-sized problems to optimality and an evolved Dis-

patching Rule (DR) using a Genetic Programming-based Hyper-Heuristic (GPHH) for

solving industry-sized problems. Sun et al. (2021) studied many-objective flexible job-

shop scheduling problems with transportation and setup times where the objective is to

minimize the makespan, total workload, workload of the critical machine, and penalties

of earliness/tardiness. They proposed a Hybrid Many-objective Evolutionary Algorithm

(HMEA) that includes a tabu search with the neighborhood structure to improve the

local search ability and a reference-point-based non-dominated sorting selection to guide

the algorithm to search towards the Pareto-optimal front and maintain the diversity of

solutions.

2.2.4. Subassembly Requirement

In traditional scheduling problems, including JSP and FJSP, jobs are independent of

each other, which is not the case in many practical settings. Products have multi-level

structures meaning they have subassemblies of different quantities that go through dif-

ferent manufacturing processes and can even have their own subassemblies. Therefore,

in addition to E/T features, we also considered multi-level product structure in our

Two-Stage GA FJSP scheduling presented in chapter 5. In our model, each final as-

sembly can have several operations and several immediate subassemblies (child) that

are considered different jobs/products with their own operation routings. Each of these
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subassemblies can have its own subassemblies, and so on. “Bill of Material (BOM)”

of each job/product, whether final assembly or subassembly, indicates its immediate

subassemblies and their usage rate. In computer, BOM can be presented by Priority

Constraint Matrix (PCM). Row and column numbers of the PCM correspond to the job

numbers and their elements, indicating the assembly relationship of the jobs with binary

values. We also utilized the PCM in both mathematical formulation and the Two-Stage

GA. Job shop scheduling with assembly requirements is called an Assembly Job shop

Scheduling Problem or AJSP. In AJSPs, each job can only start after all its subassem-

blies have completed their production process. Assembly Scheduling Problem (ASP) for

the first time studied in 1960s to solve a multi-level assembly scheduling problem under

a random environment (Li et al. (2022b)). This section provides a quick review of the

previous AJSP studies and different utilized optimization techniques.

Assembly constraints make JSPs more complex (more NP-hard), and therefore in

the early stages, heuristic rules of distribution and scheduling are primarily used to solve

AJSPs. For example, HUANG (1984) developed a hybrid rule based on the shortest pro-

cessing time (SPT) and assembly jobs first with SPT as a tiebreaker (ASMF-SPT) to

minimize tardiness and process time of an assembly workshop. Adam et al. (1993) ap-

plies two priority rules of earliest Job Due Date (JDD)and the earliest operation due

date (OPNDD) and four due date procedures constant allowance (CON), total work

content (TWK), and critical path processing time (CPPT) in a dynamical multi-level

assembly job shops based on changing job mix, workload, and resources. Even in more

recent years, Zhong et al. (2020) applied controlled release to address a dynamic FJSP

based on a mold industry with assembly requirements. Their Dynamic Flexible As-

sembly Job Shop Control (DFAJSC) includes three dynamical sub-decisions of release

decision, routing decision, and sequencing decision as any disturbance occurs (e.g., ma-

chine breakdown, rush order).

Assembly requirement has been studied in different types of scheduling problems.

Framinan et al. (2019) published a comprehensive review of the deterministic ASPs

and categorized more than 200 ASP studies into four groups, including (1) assembly
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scheduling with a dedicated machine, (2) assembly scheduling with flexible machines,

(3) distributed assembly scheduling and (4) general layout (job-shop) assembly models.

For the categorization purpose, they proposed a unified notation for assembly scheduling

models. As can be expected, there are several GA-based ASPs. Chen and Ji (2007)

introduced a GA with two minimization objectives of production flowtime and earliness

and tardiness costs for scheduling products with a multi-level structure. They used an

interesting encoding scheme to generate a feasible solution using product structure and

the string of random numbers to avoid any repair mechanism. The jobs with the highest

random priority number are selected for scheduling only if all their subassemblies (if

they have any) are scheduled. In another study, Na and Park (2014) combined GA

with priority rules and local search to minimize total tardiness in the FJSP with a

multi-level job structure with due dates. Ming Huang et al. (2015) also addressed JSP

with assembly constraints using GA. Their GA uses the common string encoding in

which different jobs are represented by different numbers and are repeated the same as

their number of operations. To ensure the chromosomes follow assembly constraints,

a repairing mechanism switches jobs in the scheduling sequence based on the Priority

Constraint Matrix (PCM).

Many other popular optimization techniques have also been utilized to solve AJSP,

like Li et al. (2022b), who used a mixed-integer linear program and artificial bee colony to

model a Flexible Assembly Job-shop Scheduling Problem with Lot Streaming (FAJSP-

LS) as a two-stage problem where the assembly stage is the second stage for the flexible

job shop manufacturing. Additionally, there are some studies that used more unique

or new algorithms like Sooncharoen et al. (2020) and Li and Feng (2021) who utilized

Gray wolf optimization (GWO), which is a new meta-heuristic technique inspired by

grey wolves leadership hierarchy and hunting mechanism to address assembly job shop

scheduling. Sooncharoen et al. (2020) addressed production scheduling of a Capital

goods manufacturing of highly customized products in order to minimize the combination

of earliness and tardiness costs. While Li and Feng (2021) developed a multi-objective

GWO to consider completion time and total energy consumption minimization, including
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non-production energy consumption.

Among all the ASP papers that Framinan et al. (2019) reviewed, only a few papers

addressed general layout (job-shop) assembly models. To the best of our knowledge, no

assembly FJSP has been studied with all other different features that we have in our

model, including detached or attached sequence dependent setup time, outsourcing some

operations, and the jobs with and without due dates, in addition to the multi-objective

Two-Stage GA as it is described in chapter 5.

2.2.5. Outsourcing Options

Outsourcing is another feature that is common in real-world job shop manufacturing

but is not considered in the classic job shop scheduling literature. Classic JSP and

FJSP assume all jobs and operations are being processed in-house. However, due to

the increasing complexity of products and the specialization of enterprises, many job

shops outsource part of their auxiliary processes. Also, for some job shops, meeting a

tight deadline is so crucial that they decide to outsource even the processes with internal

capability. This is the author’s professional experience as well that several companies

rely on available and low-cost outsourcing services, especially in industrially advanced

regions like southwestern Ontario. So it was a surprise to see that this aspect of job

shop scheduling is not well studied yet. This section summarizes almost all the studies

we identified under outsourcing in job shop scheduling.

Safarzadeh and Kianfar (2019) provided a comprehensive literature review on out-

sourcing in scheduling. They have classified these studies based on machine environment

types: single machine, parallel machine, flow shop, and job shop. The earliest publica-

tion of any reported machine environment type is from 2005. Chung et al. (2005) is one

of the only three JSP with outsourcing studies that Safarzadeh and Kianfar identified

before 2019, and our literature search also confirms it. The authors of both other two

papers are Xiuping Guo and Deming Lei, which were published in 2014 and 2016. We

should add that there are prior studies that applied overtime scheduling as a solution to

achieve tight due dates rather than outsourcing or subcontracting (Chung et al.).
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As we mentioned, to the best of our knowledge Chung et al. (2005) is the first study

that addressed a JSP with outsourcing. They presented a 2 phase heuristic algorithm for

JSP with due-date constraints and the outsourcing option. The first phase improves the

sequence of operations on a bottleneck machine to minimize the maximum lateness of

the jobs by scheduling the in-house operations. Then, in the second phase, a branch-and-

bound algorithm identifies the operations to be subcontracted on a bottleneck machine

for the late jobs. These two phases are repeatedly executed together to obtain good

solutions. Another interesting aspect of this research is that they assumed each operation

could be subcontracted independently.

Based on Safarzadeh and Kianfar (2019) literature review, most researchers (in-

cluding themselves) have considered outsourcing the whole job rather than outsourcing

only some operations. This is the case for the following two published papers by Guo and

Lei. Guo and Lei (2014) presented a two-phase neighborhood search (TPNS) to solve a

bi-objective JSP to minimize total tardiness and the outsourcing cost where some jobs

(not operations) are outsourced. In the first phase of TPNS, an initial solution pool

is generated randomly and improved using four neighborhood structures. The second

phase uses outsourcing and scheduling decisions to improve the best solution of the first

phase. Then in their 2016 paper, they changed total outsourcing cost from an objective

function to a constraint with an upper bound. This way, minimizing total tardiness

is the only objective, and outsourcing is just an effective method to achieve this goal.

They applied a new metaheuristic algorithm named Shuffled Frog-Leaping Algorithm

(SFLA) to minimize total tardiness. Later Safarzadeh and Kianfar (2019) for the first

time considered the makespan as the objective for JSP with outsourcing in addition

to outsourcing cost. They proposed a Mixed Integer Linear Programming (MILP) and

Constraint Programming (CP) to minimize the weighted sum of makespan and total

outsourcing cost of a JSP with the option of outsourcing some jobs (not operations).

They also developed two problem relaxation approaches to obtain strong lower bounds

for some large-scale problems for which exact methods cannot attain optimal solutions

in a reasonable time.
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There are not many JSP outsourcing papers after 2019 either. Xu et al. (2021)

developed a Hybrid Genetic Algorithm and Tabu Search (H-GA-TS) to combine advan-

tages of GA in global search and TS in local search to address minimizing makespan,

costs, quality, and carbon emission in distributed FJSP with outsourcing. They used

the Fuzzy Analytical Hierarchy Process (FAHP) to transform the multi-objective prob-

lem into a single-objective problem. Gao et al. (2022) considered a unique scenario

of subcontracting semi-finished parts when the job cannot complete on time. In their

study, no operation from the middle of the job routing can be outsourced. Only the first

set of operations can be outsourced and the semi-finished part comes to be completed

in-house. Considering this outsourcing restriction, they have addressed the no-wait job

shop scheduling problem with no waiting or interruption between two consecutive op-

erations of the same job. The problem’s main objective is minimizing subcontracting

costs while meeting the deadlines and they have proposed two mathematical models of

integrated MILP (MILP-IS) and a rolling timeline MILP (MILP-RTL) to solve it. For

solving bigger size problems an artificial bee colony algorithm based on a rolling timeline

(RTL-ABC) is also developed. Su et al. (2022) proposed a self-organizing neural sched-

uler (SoNS) for FJSP with the total tardiness objection under the periodic maintenance

and mandatory outsourcing (FJSP-PMMO). The mandatory nature of outsourcing is

coming from the fact that many manufacturing companies prefer to outsource a portion

of their auxiliary processes rather than acquiring the equipment and skillset to be able

to focus more on their core processes. It is unlike the other studies that outsourcing

is optional as a way to improve tardiness. Li et al. (2022a) also considered a unique

scenario in which outsourcing constraints determine available start and end times for

outsourcing operations. They presented a sequence-based mathematical model and a

hybrid self-adaptive differential evolution algorithm with heuristic strategies (HSDE)to

minimize weighted overdue days considering these outsourcing constraints and jobs with

different priorities.
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2.3. Scheduling Objective (Single and Multi-objective)

Any scheduling problem attempts to optimize one or more objective functions. While

scheduling objectives in industries vary, researchers mainly focused on a limited number

of objective functions such as minimizing makespan, mean and total tardiness, total com-

pletion time, and machine workload. Many researchers, including Bagheri and Zandieh

(2011), reported the makespan criterion (minimization of the maximal completion time

of all operations) as the most common objective function in solving JSPs. Çaliş and

Bulkan (2015) reported that 55% of JSP papers (which utilized AI and were published

between 1997 and 2012) had used a single makespan criterion and only 19% considered

multi-objective function. Among due date-based criteria, Mousakhani (2013) reported

minimization of total tardiness as the most common one. Among practical scheduling

studies and case studies that Fuchigami and Rangel (2018) reviewed, makespan or a re-

lated function is the most used criterion (54%), then tardiness measures with 26% of the

papers. Other less frequent measures were production costs related (15%), minimizing

the mean flowtime (11%), lateness (9%), total setup time (7%), electricity cost (7%) and

idle time (4%).

Chaudhry and Khan (2016) after closely examining 191 FJSP journal papers pub-

lished between 1990 to 2014 also reported makespan as the most popular performance

measure used in 166 or 84.26% of all reviewed FJSP articles. Makespan was used as

the sole objective function in 88 research papers (44.67%) and in combination with an-

other objective function in other 78 papers (39.59%). Since in FJSPs, machine loads

are different according to the scheduling scheme, and a suitable scheduling algorithm is

expected to reduce the maximum load of machines by balancing operation assignment,

the combination of machine load objectives and makespan is the second most common

objective that was used in 23% of FJSP papers. Authors listed a total of 55 different

objective functions, where 49 of them were only used once. Table 2.2 shows the six

performance measures (three single performance measures and three multi-objectives)

used by over 75% of published studies. They also concluded that 53% of papers had
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used single objective and 47% multi-objective performance measures. Makespan remains

popular even in more recently published papers (e.g., Ishikawa et al. (2015), Li and Gao

(2016), Shen et al. (2018), Defersha and Bayat Movahed (2018)). However, because of

increased environmental awareness in recent years, FJSP problems that integrate tra-

ditional performance measures with the minimization of shop-floor energy consumption

also started to emerge (e.g., Mokhtari and Hasani (2017); Dai et al. (2019); Meng et al.

(2019); Luo et al. (2020a)).

Table 2.2: Various objective functions reported by Chaudhry and Khan (2016)

Performance measure No. of papers Percentage
Makespan 88 44.67%

Minimum of makespan, workload of most 46 23.35%
loaded machine, total workload of machines

Minimum of makespan and mean tardiness 5 2.54%

Minimum of makespan and production costs 4 2.03%

Total tardiness 3 1.52%

Minimum of mean tardiness 2 1.02%

It is evident that many real-world scheduling objectives like meeting due dates,

minimizing flowtime, work-in-process inventory, or maximizing machine utilization are

missing from this table (2.2). However, this is not the only issue. According to Lal and

Durai (2014) and as we will show in chapter 4, some scheduling performance measures

are in tradeoff with each other, which means improving some objectives can have the

opposite effect on the rest. For example, finishing jobs too early in a just-in-time en-

vironment may cause unwanted excess WIP or finished goods. Therefore, optimizing a

wide variety of objectives is vital to achieving good scheduling.

One of the common methods of solving a multifunction scheduling problem is

combining all objectives into a single weighted aggregating function like Bagheri and

Zandieh (2011) proposed a bi-objective case of minimizing makespan and mean tardiness

for FJSP with sequence dependent setup times where the two objectives are combined
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into a single weighted function. In Xing et al. (2009) research, users can rank objective

preferences with “very important”, “important”, and “unimportant” weight tags. An

interesting modification to this approach was used by Kachitvichyanukul and Sitthitham

(2011), who developed a Two-Stage GA that, in the first stage, parallel GAs evolve

for each individual objective, and then in the second stage, all are combined into one

population and evolve toward a single weighted objective function.

2.4. Solution Methods

As we discussed, FJSP is an extension of the classical JSP in which, during the schedul-

ing process, an operation can be assigned to a machine from a set of available alter-

natives. Thus, FJSP integrates a routing problem (assigning operations to machines)

and sequencing problems (sequencing the operations on each machine) that need to

be solved simultaneously. The flexibility of FJSP improves scheduling efficiency (i.e.,

shorter makespan) while it makes solving FJSPs more complex than JSPs (Defersha

and Bayat Movahed (2018)). Additionally, JSP and FJSPs are NP-hard (Wang et al.

(2008)) which means exact algorithms cannot guarantee the optimum solution in finite

time (Kachitvichyanukul and Sitthitham (2011)).

Sun et al. (2010) list two approaches to solve routing and sequencing problems:

concurrent (also known as integrated) and hierarchical approaches. The hierarchical ap-

proach reduces the complexity of FJSP by separating the assignment decisions from the

sequencing decisions of operations into two sub-problems. Since the sequencing problem

is the classical JSP, this approach was more popular at the time FJSP was introduced.

Brandimarte (1993) is one of the early researchers that proposed a hierarchical algo-

rithm for the FJSP with two-way information flow between routing and sequencing

problems. They tackled both problems with Tabu Search (TS) algorithm for different

objective functions and solved benchmark problems to present the algorithm’s efficiency.

On the other hand, the concurrent (or integrated) approach simultaneously assigns each

operation to an eligible machine (routing problem) and prioritizes the operations on
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the machines (sequencing problem). As can be guessed, concurrent approaches achieve

higher quality results, and researchers developed several techniques using this approach.

The flexible job shop scheduling problem continues to attract many researchers be-

cause of its broad applications in real manufacturing settings. From 1990 that Brucker

and Schlie (1990) for the first time proposed an algorithm to solve an FJSP with only

two jobs, several approaches have been developed by researchers in three categories of

“exact algorithms”, “dispatching rules”, “metaheuristic, and artificial intelligence” as it

was introduced in Chapter 1. Among all the different solution techniques, metaheuris-

tics have proven to be a promising method for solving FJSP as an NP-Hard problem.

Although the metaheuristic algorithms cannot guarantee finding the global optimum so-

lution for FJSPs, they can find very satisfactory solutions (near optimal) in a reasonable

computational time. While finding the optimal solution through the exact algorithms for

the same FJSPs can be very time-consuming, to the point that it becomes impractical

due to the manufacturing priorities and timeline.

In recent years, researchers have developed different metaheuristic techniques like

Genetic Algorithms, Tabu Search, Petri Net, Ant Colony, and also hybrid algorithms

(a combination of two or more techniques) that can find good solutions (not necessarily

global optimum) for FJSPs. Chaudhry and Khan (2016) identified 197 different applica-

tions or techniques to address FJSP in 191 FJSP journal papers (some papers presented

more than one technique). The authors have categorized all those techniques/methods

into 14 groups of Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Artifi-

cial Immune System (AIS), Evolutionary Algorithms (EA), Greedy Randomized Adap-

tive Search Procedure (GRASP), integer/linear programming, Neighborhood Search

(NS), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Tabu Search

(TS), mathematical programming, deterministic heuristics, hybrid techniques that is

the combination of two or more techniques and miscellaneous techniques.

Wang et al. (2008) mention these meta-heuristic algorithms can achieve a satis-

factory solution for FJSP, but their performance is highly dependent on the parameters

used. Among all different metaheuristic algorithms, the Genetic Algorithm has been
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identified as the most effective evolutionary technique for solving JSP and FJSP (Am-

jad et al. (2018)). From the time that Mesghouni et al. (1997) and Chen et al. (1999)

used GA for the first time to solve FJSP, GA became the most popular technique among

all different metaheuristic techniques that various researchers have used for solving FJSP,

and even its popularity is increasing in the recent years. Chaudhry and Khan (2016)

show EA and, more specifically GA, is the most popular technique used by 34% (or 65

papers out of 191) of the publications, whether in hybrid or pure form. In a more recent

survey, Amjad et al. (2018) reviewed 190 FJSP papers using a variant of GA from a total

of 384 articles found on the FJSP published from 2001 to December 2017. Also, they

indicated that 79% of listed articles had been published in the last seven years from 2009

to 2017, which means GA popularity is increasing. Fuchigami and Rangel (2018) also

reported similar findings on the popularity and effectiveness of metaheuristic and GA

applications. After systematic research among hundreds of scheduling studies published

between 1992 to 2016, the authors only found 46 practical papers. More than half of

the papers (26 cases or 68%) used meta-heuristics, 17 papers (or 45%) used Mixed In-

teger Linear Programming (MILP) models, and 16 papers utilized heuristics, including

computer simulations and priority rules. MILP is the only exact solution method that

has been used, with no case of branch-and-bound or dynamic programming. Within

meta-heuristics algorithms, the genetic algorithm by far is the most popular technique

(47% of cases) that indicates its effectiveness in practical scheduling problems. Other

techniques are Simulated Annealing with 9%, Neural Networks, Ant Colony, Variable

Neighborhood Search, and Particle Swarm Optimization, each with a 6% frequency of

use.

As discussed in Chapter 1, the Genetic Algorithm belongs to a larger class of

Evolutionary Algorithms that use the evolution mechanism of the biological community

and have a high degree of parallelism, randomness, adaptiveness, and other advantages

of a combinatorial optimization search method. EAs are a set of population-based

algorithms that, in addition to GA, include the Memetic Algorithm (MA), Immune

Algorithm (IM), and Scatter Search (SS). A review of the research trend in GA-based
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FJSP methods can be found in Amjad et al. (2018), whereas that of SI and EA, in

general, was presented in Gao et al. (2019). In addition to EA, Sergienko et al. (2009)

introduced 6 other combinatorial optimization techniques categories. These 7 categories

are (1) sequential algorithms, (2) deterministic local search, (3) stochastic local search,

(4) swarm intelligence, (5) evolutionary algorithm, (6) scanning methods, and (7) other

special methods, including exact algorithms. Among these methods, 3, 4, and 5 are

commonly used in solving FJSP.

Stochastic Local Search (SLS) includes Simulated Annealing (SA), Iterated Lo-

cal Search (ILS), Greedy Randomized Adaptive Search Procedure (GRASP), and Tabu

Search (TS). Following are some examples of the SLS application in FJSPs. Cruz-

Chávez et al. (2017) developed an SA-based algorithm for the basic FJSP problem. ILS

algorithm that independently and iteratively changes machine assignment and opera-

tion sequencing was proposed in Ishigaki and Takaki (2017). Rajkumar et al. (2011)

developed GRASP for multi-objective FJSP to minimize (i) makespan, (ii) maximum

workload, and (iii) total workload. A TS was developed in Jia and Hu (2014) with these

same three objectives. Lot streaming in FJSP using TS was addressed in Fernández

Romero et al. (2018).

Swarm Intelligence (SI) refers to a collection of techniques based on insects’ social

behavior in solving complex problems by interacting with each other and their environ-

ment. These techniques include, among a few others, Ant Colony Optimization (ACO),

Particle Swarm Optimization (PSO), and Bee Colony Optimization (BCO). A survey of

these techniques for various types of discrete optimization can be found in Krause et al.

(2013). Their applications in FJSP are also abundant. For instance, ACO-based algo-

rithms for FJSP with sequence dependent setup and transportation time were proposed

by Rossi and Dini (2007) and Rossi (2014). Shahgholi Zadeh et al. (2019) developed

a BCO algorithm for scheduling dynamic FJSP that involves rescheduling when unex-

pected changes cause deviation from the primary schedule. A two-level PSO for FJSP

was developed by Zarrouk et al. (2019), where the top-level deals with machine assign-

ment and the lower-level deals with operations sequencing.
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2.5. Genetic Algorithm for FJSP

GA was introduced in 1975 by Taylor (1994) and since then has gained sprawling popu-

larity in solving a wide range of complex problems in different disciplines. A significantly

large number of researchers applied the genetic algorithm to solve very diverse problems

in manufacturing systems design and operation. GA is the most popular technique in

solving JSP and FJSP. Çaliş and Bulkan (2015) listed GA as the most popular AI (Ar-

tificial Intelligence) technique in solving JSP. They reported that 26.4% of JSP papers

using AI published between 1997 and 2012 used GA. Falkenauer and Bouffouix (1991)

was one of the first researchers who developed a GA to solve JSP. Their chromosome

encoding consists of several strings equal to the number of machines, where each string

shows the sequencing of operations on the machine. The GA model for FJSP has been

initially developed by Mesghouni et al. (1997) and then by Chen et al. (1999). Mesghouni

et al. (1997) proposed “parallel jobs representation (PJsR)” to minimize the makespan .

In the PJsR, the chromosome is a matrix where the number of rows equals the number

of jobs. Each row consists of several genes equal to the number of job operations. Each

gene has two elements of the machine selection and the starting time of the operation.

Chen et al. (1999) proposed a two-segment chromosomal encoding that many researchers

have used afterward, as we reviewed in section 3.4.1. Their chromosome encoding has

two strings of chromosome A and chromosome B, where chromosome A defines the rout-

ing policy of the problem, and chromosome B defines the sequence of the operations on

each machine.

GA has its own shortfalls like it is known that GA results are unstable Hamzaçebi

(2008). It also can be shown that different random numbers will result in different final

solutions that may be very close but not equal. To address this issue Caponetto et al.

(2003) studied the effect of Random Number Generator (RNG) on GA performance.

They have introduced using chaotic sequences instead of random ones. They have per-

formed t-tests to show that some chaotic sequences always increase GA performance

indexes compared to random sequences. Another algorithm called Improving GAs by
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Random Search Technique (IGARSET) is suggested by Hamzaçebi (2008). IGRASET

has two searching phases where the first phase is a GA global search, and the second

phase is a local search around the found best solution. The local search produces a dx

vector from [-α,α] range to adjust moving step sizes for each variable. The value of α

becomes smaller by setting the new value at half of the previous value.

Oppacher and Wineberg (1999) have discussed that GA tends to get trapped at

local maxima and has difficulty changing search space after convergence has occurred.

This is due to the fact that when the GA population evolves, diversity reduces, and

the same/similar chromosomes may be reevaluated over and over. To address these de-

ficiencies, Oppacher and Wineberg (1999) have suggested a modified Shifting Balance

Genetic Algorithm (SBT) and presented some experimental results showing that SBGA

reduces premature convergence issues and improves GA performance under a dynamic

environment. SBT divides the population into small, semi-isolated demes to give a bet-

ter chance for the population to explore. As a result, the size of subpopulations that

reach higher fitness will increase and send out more migrants than other subpopula-

tions. So better gene combinations are gradually spread throughout the entire set of

subpopulations through interim selection.

Shi et al. (2018) state that the GA population with higher diversity is more likely

to escape from local optima. So increasing population diversity will be another method

of reducing the likelihood of GA trapping in local optima and improving GA perfor-

mance. Ho et al. (2007) proposed an architecture for integration between evolution and

learning within a random search process of FJSP called LEarnable Genetic Architecture

(LEGA). The authors presented many examples that through LEGA, the knowledge

extracted from the previous generation by its schemata learning module is used to in-

fluence the diversity and quality of offspring. Another common way of improving GA

diversity is Parallel GA (PGA) which uses different methods for evolving populations in

parallel. PGA is less likely to be trapped in sub-optimal regions than regular GA, which

uses a single population. Defersha and Chen (2010b) have proposed an island model

PGA to solve a flexible job-shop scheduling problem incorporating sequence dependent
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setup time, attached or detached setup time, machine release dates, and time lag re-

quirements. Island-model is a common approach that uses multiple subpopulations that

are separately evolving on several processors and periodically exchanging individuals. In

addition to regular GA operators, PGA employs a migration operator that determines

(1) the number of individuals undergoing migration, (2) the frequency of migration in

numbers of generations, and (3) the migration policy directing the type of individuals

(best, according to fitness, random, etc.) from one subpopulation to migrate to another.

It also directs the type of individuals (worst, random, etc.) to be replaced. We have

implemented PGA in our models presented in Chapter 3 and Chapter 4. Some other

recent applications of GA for FJSP include Defersha and Bayat Movahed (2018), Lin

and Zhang (2019), Zhang et al. (2020), Luo et al. (2020b), and Luo et al. (2020a).

2.5.1. Genetic Operators

The performance of genetic algorithms, to a great extent, depends on the performance

of their genetic operators since it is the operators that are responsible for the whole

evolution process. First, the selection operators select more fit chromosomes for the

reproduction process. The selection operator can be applied in several different schemes,

such as (i) Roulette Wheel, (ii) Ranked, (iii) Truncation, (iv) Boltzmann, (v) Elitism,

and (vi) K-ways Tournament. Roulette Wheel Selection and Tournament Selection are

the two more popular techniques widely used in the GA models for FJSPs. The roulette

wheel selection is less popular than it was in the past due to issues like existing a “super

individual” which may cause premature convergence (Zhang et al. (2011)). However, in

the tournament selection, there is no arithmetical computation based on the fitness value.

So “weaker” chromosomes have some chance to be selected, preventing the GA process

from permutation. Jinghui Zhong et al. (2005) compared the performance of these two

selection operators and concluded that tournament selection outperforms roulette wheel

selection. This aligns with our finding about better performance of tournament selection

presented in 4.4.3.

Also, as per Miller and Goldberg (1996), an ideal selection scheme should be
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simple to code and efficient for both nonparallel and parallel architectures. Finally,

it should be able to adjust its selection pressure to tune its performance for different

domains. K-ways Tournament selection satisfies all of the above criteria (Miller and

Goldberg, 1996), and consequently, we used it in all proposed genetic algorithms in this

research. When this selection operator is applied, it holds a tournament competition

among k randomly selected individuals. Then, the best individual from the tournament

is declared the winner and inserted into the mating pool for the next generation. The

contest is repeated until the mating pool reaches the desired population size. In this

process, the selection pressure can be increased or decreased by increasing or decreasing

the value of k. This adjustment is needed to strike a balance between exploitation (when

k is large) and exploration (when k is small).

Once the selection process is completed, the individuals in the mating pool are

randomly paired, and crossover operators are applied to each pair. Then, the resulting

children undergo different mutation operators and finally constitute the population for

the next generation. Unlike a selection operator, which can be applied similarly across

problem domains, crossover and mutation operators need to be tailored to match the

problem at hand and the solution representation adopted. As per Hong et al. (2000),

each problem, even each stage of the genetic process in a single problem, requires ap-

propriately defined crossover and mutation operators. Crossover operators select two

chromosomes (parents) from the reproduction pool and generate two offspring, while

mutation operators start with only one chromosome and transform it into one child.

A.J. and P.D. (2015) classified crossover into three main categories of classical standard,

binary, and application-dependant operators and introduced several types of crossover

operators from each category. They conclude that each crossover operator has advan-

tages and disadvantages for different types of problems. Hence they recommend review-

ing similar solved problems and various crossover operators before selecting or creating a

new crossover. In addition to crossover operator type, the probability rate these opera-

tors are applying is also important. A.J. and P.D. (2015) reported that most researchers
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had set the value of crossover probability between 0.6 and 1 but finding the right prob-

ability depends on the type of crossover. The mutation operator is applied with a small

probability of introducing more variability into the population and enhancing diversity.

However, a large probability may destroy the good chromosomes (Zhang et al. (2011)).

High probability rates of crossover and mutation increase diversity and recombination

opportunity, whereas low rates improve quality by less disrupting good combination

(Mansouri (2005)). Researchers have used many techniques, including ANOVA and Dy-

namic selection, to set the right value for GA operators. Akgündüz and Tunalı (2011)

classify these techniques into two major forms “Parameter Tuning” and “Parameter

Control” as described below.

• Parameter Tuning: This is about finding good parameter values (e.g., crossover

and mutation probabilities, population size, etc.) before running the algorithm and

keeping them unchanged during running GA. Parameter tuning has been widely

adopted by researchers. Since GA parameters often interact in a complex way,

tuning one parameter at a time may cause suboptimal issues. However, the simul-

taneous tuning of more parameters needs an enormous amount of experiments.

So the best configurations of GA parameters can be determined through several

experiments prior to the run of the algorithm. Design of Experiments (DOE) and

Analysis of Variance (ANOVA) are common methods of parameter tuning that

have been used by Kundakcı and Kulak (2016) and Essafi et al. (2008) among

many others.

• Parameter Control: In this method, GA starts with initial parameter values, which

will change through different mechanisms during the GA run:

– Deterministic Parameter Control: Changing GA parameters through some

sort of deterministic rules without using any feedback (e.g., a time-varying

schedule)

– Adaptive Parameter Control (APC): Some form of feedback is used to change
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GA parameters. Akgündüz and Tunalı (2010) employed APC for a multi-

objective GA that modifies GA parameter values for every G number of itera-

tions based on the GA performance of the last G iterations. Their experimen-

tal results show that the proposed adaptive GA outperformed non-adaptive

algorithms.

– Self-adaptive Parameter Control: This is a more advanced technique that GA

parameters are part of the GA chromosomes and will be optimized through

GA evolutions. So parameter values that generate better individuals have a

higher survival chance and produce offspring.

In terms of GA for FJSP, the crossover and mutation operators can be categorized

as assignment and sequencing operators. Assignment operators change the machine

assignment of the chromosomes either through exchanging the assignment of selected

operations between two parents (in a crossover operator) or altering the assignment

of one or a few operations of one individual chromosome (in a mutation operator).

This is similar for sequencing operators, except here, job sequencing of chromosomes is

changed considering precedence constraints among operations of the same job either as

a checkpoint built in the actual operator or done by a repairing mechanism afterward.

One way or another, according to the precedence constraint, any operation cannot start

unless all previous (precedence) operations of the same job have been completed. There

are several types of crossover and mutation operators have been developed for FJSP,

such as “Precedence Preserving Order-based Crossover (POX)”, “Precedence Preserving

Shift Mutation (PPS)”, “Position Based Mutation (PBM)”, “Machine Based Mutation

(MBM)”, “Operations Swapping Mutation (OSM)”, and “Assignment Altering Mutation

(AAM)”. We have modified and developed several GA operators that will be described in

chapters 3, 4, and 5. Regarding selection operators, as discussed, K-ways Tournament

has been utilized in all proposed genetic algorithms in this research due to its broad

advantages over the other popular techniques and the result of the empirical analysis

done in section 4.4.3.
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2.6. Two-stage GA for FJSP

As we mentioned, GA has been used extensively in FJSP as a stand-alone or primary al-

gorithm in hybrid approaches. Each researcher has used a different technique to improve

the GA performance. Shi et al. (2018) have classified hundreds of the GA improvement

strategies for solving FJSP into five basic categories and compared their performance

using some proposed algorithms and benchmark problems. The five categories are “dis-

crete”, “multi-population”, “mixed”, “parallel” and “multistage” structures. The dis-

crete structure uses some sort of discretization method. The multi-population structure

has more than one population to improve the population’s diversity and avoid premature

convergence. A mixed or hybrid structure utilizes operators of one technique or its main

idea in another technique. A parallel structure has two or more different populations

corresponding to two or more different techniques in a newly obtained algorithm. This

differs from multi-population, which uses only one technique to evolve multiple popu-

lations. In a multistage structure, there are two or more populations that are evolving

one after another. Then Shi et al. (2018) ran several sample problems and concluded

that hybridization of GA with other techniques is the best strategy among the five stud-

ied structures, followed by the multistage structure, and suggested these two should be

the first strategies to consider for improving GA performance in solving FJSP. They

also pointed out that, unlike hybridization, which is the most popular improvement GA

strategy, there are only a few papers with multistage structures despite its effectiveness.

One of the first studies that presented a multistage GA for FJSP is Zhang and Gen

(2005). Their multistage model, in fact, is a way of simplifying solution representation

to reduce completion time calculation. It considers the total number of operations for all

jobs as K stages and the total number of machines as M states in a multistage solution

representation. A novel Two-Stage GA has been developed by Wang et al. (2008) that

in the first stage uses an optimal computing budget allocation method to find the fittest

GA parameters (number of population, probability of crossover, and mutation) for the

given JSP. Then in the second stage, a regular GA uses those optimized parameters to
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solve the FJSP. They solved some benchmark problems to illustrate the efficiency of

their model. Ma et al. (2009) also utilized similar multistage encoding to Zhang and

Gen (2005) and proposed a hybrid of GA with bottleneck shifting. Bottleneck shifting

interchanges operation sequences and machine assignment of operations on the critical

path to improve the makespan. Their solution encoding has two vectors representing

each solution candidate. One vector is for initialization and mutation, and the other

is for crossover operation. Al-Hinai and ElMekkawy (2011) presented a Two-Stage GA

to provide a robust scheduling algorithm for FJSP in the presence of random machine

breakdown. In the first stage, they do not consider any breakdown. They have also used

a similar hybrid GA introduced in Al-Hinai and Elmekkawy (2011) and are utilizing

a special initial population method (Ini-PopGen). In this approach, half of the initial

population is formed randomly, but another half follows the Ini-PopGen technique. At

Ini-PopGen, the machine that can complete the job in the shortest time, considering

the processing time and its current workload, will be assigned to process the operation.

In this approach, jobs are ordered randomly, but the first operation of all jobs in that

order will be complete (i.e., o1 of j3 then o1 of j1 then o1 of j2) before going to the

next operations (i.e., o2 of j3 then o2 of j1 then o2 of j2). The first stage provides

a high-quality population to be fed into the second stage. The second stage considers

random machine breakdown with a bi-objective objective of makespan minimization with

a robust evaluation function that combines three stability measures. Another interesting

application of Two-Stage GA for solving multi-objective JSPs has been developed by

Kachitvichyanukul and Sitthitham (2011). At stage one, parallel GAs with independent

populations and allowing migration among populations evolve to produce high-quality

solutions for each objective function. These populations are combined in stage two and

evolve using the weighted aggregating objective function. They have considered a JSP

with three objectives: minimizing makespan, minimizing total weighted earliness, and

minimizing total weighted tardiness, and used benchmark problems to demonstrate the

algorithm’s effectiveness. A recent multistage GA for FJSP has been developed by Shi

et al. (2018), which in the first stage uses a discrete IWO (Invasive Weed Optimization)
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approach, then better individuals will be fed as the initial population of the second stage

GA.

The quality of the initial population of an evolutionary algorithm is a crucial

factor that affects its ability to find good solutions with less computational time (Bajer

et al., 2016; Rahnamayan et al., 2007). If the initial population is constituted of good

individuals, it may lead the search toward promising regions of the problem space from

the get-go. Kacem et al. (2001) created a method referred to as Approach by Localization

(AL) to generate a promising initial population in solving FJSP using evolutionary

optimization. A variant of the AL method was later proposed in Pezzella et al. (2008).

The approach was then extended in Defersha and Chen (2010b) to account for sequence

dependent setup time and machine release date. Considering this fact to create a high-

quality initial population, in chapter 3, we describe our highly efficient Two-Stage GA

for solving FJSP, that the first stage generates a high-quality population that will be

fed as the initial population into the second stage. The first stage of genetic search is

different from the described common approach of GA for FJSP, which determines both

operation sequencing and machine assignment through genetic search. This stage has a

solution encoding that only dictates the sequence in which operations are considered for

assignment. For the assignment problem, machines are assigned through an evaluation

(decoding) process that starts from the first operation in the GA coding and finds

machines that can complete each operation the soonest by considering process time and

also operations that are already assigned to the machine. Then the second stage starts

from the high-quality population created by the first stage and follows the common

approach of the genetic algorithm for FJSP to enable searching the entire solution space

and includes solutions that might have been excluded because of the greedy nature of

the first phase.

The algorithm has been successfully tested on benchmark FJSP problems and also

on more complicated random generated problems that include attached or detached

sequence dependent setup time, process lag time, and machine release date in order

to demonstrate the performance improvement better. In order to do so, we developed
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a random problem generator code to produce several FJSPs incorporating attached or

detached sequence-dependent setup, machine release dates, and time lag requirements as

per the model presented by Defersha and Chen (2010b). We solved these more complex

problems with both proposed Two-Stage GA and regular GA to illustrate how good the

performance of the proposed algorithm is in solving more realistic and complex FJSPs

compared to regular GA.

As was discussed earlier, in addition to multi-staging, Shi et al. (2018) listed multi-

population and parallel as GA improvement strategies. However, they concluded that

multi-staging outperforms multi-population and parallel. We also came to the same

result as shown in chapters 3 and 4, we improved the performance of the proposed Two-

Stage GA by using high-performance parallel computation. However, we found that the

sequential version of the Two-Stage GA (using a single CPU) outperformed a parallel

implementation of the regular genetic algorithm that uses many CPUs.
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Two-Stage GA for FJSP

3.1. Introduction

As we discussed in chapter 1 the solution encoding of many regular genetic algorithms

(RGAs) developed in the literature for flexible job-shop scheduling problem (FJSP)

has two parts: one part encodes the assignment decision and the other the sequencing

decision. The genetic search determines both the assignment and the sequencing of the

operations simultaneously through a random process guided by the principles of natural

selection and evolution. In this research, we develop a Two-Stage Genetic Algorithm

(2SGA) with the first stage being different from typical RGAs. The first stage of 2SGA

has a solution encoding that only dictates the sequence in which the operations are

considered for assignment. Whenever an operation is considered for the assignment,

the machine that can complete this operation the soonest is selected while taking into

account its process time and all operations that are already assigned to this machine.

The order in which the operations are assigned to machines determines their sequence.

The second stage, starting from the solutions of the first stage, follows the common

approach of RGAs for FJSP to enable the algorithm to search the entire solution space

by including solutions that might have been excluded because of the greedy nature of the

first stage. Initially, we developed the Two-Stage Genetic Algorithm for a regular FJSP

and tested the proposed algorithm by solving many benchmark problems and several
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large-size problems that is published at Rooyani and Defersha (2019).

This observed high performance of the algorithm is attributed to some of its distinct

features. One of these features is its inherent ability to create a high-quality initial

population. The quality of the initial population that can be created by the proposed

solution encoding/decoding is by far better than the one that can be generated using a

specialized initialization technique that appeared in Kacem et al. (2001) and later used

by many researchers (e.g., Tang et al. (2011); Pezzella et al. (2008); Defersha and Chen

(2010b)). This feature enables the algorithm to find highly improved solutions from

the get-go of the search. The greedy nature of the first stage of the search accelerates

convergence and shortens the computational time required to reach reasonable solutions

by many folds. The second stage further improves the solution of the first stage. With

these features, the proposed algorithm outperforms the existing approach both in terms

of convergence speed and final solution quality.

Further, we applied the Two-Stage GA on a comprehensive FJSP model with

sequence-dependent setup, machine release date, and lag time between operations. We

generated several examples and run them to illustrate the performance of the proposed

two-stage algorithm greatly exceeds that of the common approach of genetic algorithm

for FJSP. We evaluated this improved performance in several ways. Many published ar-

ticles assessed the performance of their proposed algorithms by solving selected bench-

mark problems (e.g., Ishikawa et al. (2015); Li and Gao (2016); Shen et al. (2018)).

However, such evaluations alone may be insufficient as the benchmark problems are

usually small in size and do not pose the computational challenge often encountered

when solving large-size problems. There is also no guarantee that methodologies that

perform very well in small-size problems would replicate their performance superiority

when solving large-size problems. Moreover, in industrial settings, algorithms that arrive

at reasonable solutions very rapidly may be preferred over those which achieve the same

or better solutions at the expense of excessive computational time and cost. To this

end, in addition to using benchmark problems in both our papers, we demonstrated the

performance superiority of the proposed algorithm in solving large-size problems having
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up to 140 jobs and 80 machines. We also show that the performance of the proposed al-

gorithm can be further improved using High-performance Parallel Computation (HPC).

However, the more interesting result we found was that the sequential version of the

proposed algorithm (using a single CPU) outperformed a parallel implementation of the

regular genetic algorithm that uses many CPUs. The results of this study is published

in Defersha and Rooyani (2020).

In this chapter, we present the finding and results of both papers organized as

follows. In Section 3.2 the variant of the FJSP problem for which we proposed our

algorithm is described in detail. The various components of the proposed Two-Stage

GA are presented in Section 3.3. Section 3.4 provides several numerical studies for

both classic FJSP and more comprehensive problems. Discussion and conclusion are in

Sections 3.5.

3.2. Problem Description

Many mathematical models appeared in the literature for FJSP problems. The purpose

of our model is to develop a new Two-Stage Genetic Algorithm (2SGA) that can be

tailored to efficiently solve many of those mathematical models. As it was mentioned,

we initially developed and tested the Two-Stage GA on a classic FJSP and published

it at Rooyani and Defersha (2019). To describe a classic FJSP, consider a job shop

having M machines (m = 1, 2, ..., M) and a total number of J (j = 1, 2, ..., J)

independent jobs which are to be scheduled. Job j has Oj number of operations to be

processed in a fixed order which are indexed as o = 1, 2, . . . , Oj. Operation o of

job j has a set of eligible machines. This feature is represented by a binary data Po,j,m

which is equal to 1 if machine m can process operation o of job j, 0 otherwise. Among a

set of eligible machines for an operation, only one will be selected for its processing. If

machine m is selected for processing operation o of job j, this operation will be processed

on this machine with a processing time Bj × To,j,m where Bj is the batch size and To,j,m

is the unit processing time. Rm denotes the maximum number of production runs of

59



Chapter 3. Two-Stage GA for FJSP

machine m where production runs are indexed by r = 1, 2, ...., Rm. Theoretically, Rm

is equal to the total number of operations that can be assigned to machine m and

can be increased as schedule demands. Runs are assigned to operations in sequence

and each operation is assigned to exactly one production run. Thus, the assignment

of operations to production runs determines both their assignments and sequences. A

machine can process only one operation at a time (at each run). An operation cannot

be preempted and all the machines and jobs are ready to process at time zero. This

makes a classic FJSP that we solved and demonstrated the superiority of the Two-Stage

Genetic Algorithm at Rooyani and Defersha (2019).

Furthermore, in Defersha and Rooyani (2020) we tested and illustrated the per-

formance of the Two-Stage GA on more complicated FJSPs. We considered the model

that appeared in Defersha and Chen (2010b) because of its comprehensive nature. The

model incorporates sequence-dependent setup time, attached/detached nature of setups,

machine release date, and operation lag time. In this FJSP, the machine release date

is coded by Dm and is the time when machine m will become available for processing

jobs for the current schedule. Each operation has a lag time of Lo,j (a delay for cooling,

drying, inspection, etc.) from the completion time of operation o− 1 of the same job j,

and after the required setup is completed. A setup can be attached (non-anticipatory

or inseparable) or detached (anticipatory or separable). An attached setup cannot be

performed before the arrival of the job on the machine. Whereas, a detached setup can

be performed before the job arrives. We should note both form of setups will take the

machine time and should be considered in the time between two consequent machine

runs. The nature of a setup being attached or detached is represented by a binary data

Ao,j. This binary data is equal to 1 if the setup of operation o of job j is attached and

0 if it is detached. Setup time is sequence dependent and denoted by So,j,m,o′,j′ where

operation o′ of job j′ is operation processed on machine m immediately before operation

o of job j. If operation o of job j is the first operation to be processed on machine m,

the setup time is represented by S∗o,j,m. The setup time So,j,m,o′,j′ (or S∗o,j,m) can be over-

lapped with the processing time of operation o− 1 of job j if the setup is detached and
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machine m is available for setup. Given the above problem, the task is to assign each

operation to a production run on one of its eligible machines and to determine the start

and completion time of each production run. The completion time of the production run

r on machine m is represented by ĉr,m. Whereas, the completion time of an operation

o of job j on an eligible machine m is denoted as co,j,m. If an operation o of job j is

assigned to the rth run of machine m, the variable co,j,m has the same value as ĉr,m. The

objective is to minimize the makespan of the schedule, which is the largest completion

time. 3.2.1 describes the Mixed Integer Linear Programming (MILP) formulation of this

problem as it is reported in Defersha and Chen (2010b). Also, all the model parameters

and variables are listed in List of Acronyms Section. To facilitate the discussion about

solution encoding and decoding procedures in the following sections, a data set for a

small problem instance is given in Tables 3.1 and 3.2. The problem has 5 jobs to be

processed using 4 machines. The release dates for machine-1 and machine-4 are assumed

to be D1 = 840 and D4 = 120 minutes, respectively. Machines 2 and 3 are available at

time zero. We refer to this problem as Problem-1 in the later sections of this chapter.
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Table 3.1: Data for Jobs for Problem-1

(Eligible machine, Processing Time) = (m, To,j,m)

j Bj o Ao,j Lo,j i ii iii iv

1 45 1 NA NA (1, 6.75) (2, 6.25)
2 1 0 (1, 4.25) (4, 4.50)
3 1 0 (1, 1.50) (2, 1.25) (3, 1.75) (4, 1.50)
4 0 40 (3, 2.00) (4, 1.25)

2 35 1 NA na (1, 5.00) (4, 5.00)
2 1 0 (1, 6.75) (2, 6.50) (3, 6.75) (4, 6.50)
3 1 0 (1, 6.00) (2, 5.25)
4 1 40 (1, 3.25) (4, 3.75)

3 40 1 NA NA (1, 7.00) (2, 6.25) (3, 6.25) (4, 6.25)
2 1 0 (1, 4.00) (2, 4.00)
3 0 40 (1, 5.50) (3, 5.50)

4 30 1 NA NA (1, 3.75) (3, 3.25) (4, 3.25)
2 0 0 (1, 6.25) (4, 6.75)

5 50 1 NA NA (2, 3.25) (4, 3.75)
2 1 0 (1, 2.50) (2, 2.50) (4, 2.75)
3 0 0 (1, 4.50) (2, 4.75) (3, 4.25) (4, 4.50)

NA = Not Applicable
Machine release dates in minutes: D1 = 840, D2 = D3 = 0, D4 = 120.
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Table 3.2: Sequence Dependent Setup Time Data

Setup Time S∗o,j,m and So,j,m,o′,j′

j o m (S∗o,j,m) · · ·(j′, o′, So,j,m,o′,j′ ) · · ·

1 1 1 (60) (1,1,10)(1,2,40)(1,3,60)(2,1,90)(2,2,90)(2,3,120)(2,4,90)(3,1,120)(3,2,120)(3,3,120)(4,1,90)(4,2,120)(5,2,120)(5,3,90)
2 (80) (1,1,20)(1,3,40)(2,2,120)(2,3,90)(3,1,120)(3,2,120)(5,1,90)(5,2,90)(5,3,120)

2 1 (60) (1,1,60)(1,2,10)(1,3,60)(2,1,90)(2,2,120)(2,3,120)(2,4,120)(3,1,120)(3,2,90)(3,3,90)(4,1,90)(4,2,120)(5,2,90)(5,3,90)
4 (60) (1,2,20)(1,3,60)(1,4,60)(2,1,90)(2,2,120)(2,4,90)(3,1,90)(4,1,90)(4,2,120)(5,1,90)(5,2,90)(5,3,120)

3 1 (60) (1,1,60)(1,2,40)(1,3,20)(2,1,90)(2,2,120)(2,3,90)(2,4,90)(3,1,90)(3,2,120)(3,3,120)(4,1,90)(4,2,90)(5,2,90)(5,3,90)
2 (80) (1,1,40)(1,3,20)(2,2,120)(2,3,120)(3,1,90)(3,2,120)(5,1,90)(5,2,120)(5,3,90)
3 (60) (1,3,20)(1,4,60)(2,2,120)(3,1,120)(3,3,90)(4,1,90)(5,3,120)
4 (40) (1,2,40)(1,3,20)(1,4,60)(2,1,90)(2,2,120)(2,4,90)(3,1,90)(4,1,120)(4,2,90)(5,1,120)(5,2,90)(5,3,90)

4 3 (80) (1,3,40)(1,4,10)(2,2,120)(3,1,90)(3,3,120)(4,1,90)(5,3,90)
4 (80) (1,2,40)(1,3,60)(1,4,20)(2,1,90)(2,2,90)(2,4,90)(3,1,90)(4,1,90)(4,2,90)(5,1,90)(5,2,90)(5,3,90)

2 1 1 (60) (1,1,90)(1,2,90)(1,3,90)(2,1,10)(2,2,40)(2,3,60)(2,4,60)(3,1,120)(3,2,90)(3,3,120)(4,1,120)(4,2,90)(5,2,120)(5,3,120)
4 (80) (1,2,120)(1,3,90)(1,4,90)(2,1,20)(2,2,60)(2,4,60)(3,1,120)(4,1,90)(4,2,120)(5,1,90)(5,2,120)(5,3,120)

2 1 (40) (1,1,90)(1,2,120)(1,3,120)(2,1,40)(2,2,10)(2,3,60)(2,4,60)(3,1,120)(3,2,120)(3,3,120)(4,1,120)(4,2,90)(5,2,90)(5,3,120)
2 (80) (1,1,120)(1,3,90)(2,2,10)(2,3,40)(3,1,120)(3,2,90)(5,1,120)(5,2,90)(5,3,90)
3 (80) (1,3,120)(1,4,120)(2,2,10)(3,1,120)(3,3,90)(4,1,120)(5,3,120)
4 (40) (1,2,90)(1,3,120)(1,4,120)(2,1,40)(2,2,10)(2,4,40)(3,1,90)(4,1,90)(4,2,120)(5,1,120)(5,2,90)(5,3,90)

3 1 (80) (1,1,90)(1,2,120)(1,3,90)(2,1,40)(2,2,40)(2,3,10)(2,4,60)(3,1,120)(3,2,90)(3,3,90)(4,1,120)(4,2,90)(5,2,90)(5,3,90)
2 (80) (1,1,120)(1,3,120)(2,2,60)(2,3,20)(3,1,90)(3,2,120)(5,1,90)(5,2,120)(5,3,90)

4 1 (40) (1,1,90)(1,2,90)(1,3,120)(2,1,60)(2,2,60)(2,3,40)(2,4,20)(3,1,120)(3,2,90)(3,3,90)(4,1,120)(4,2,120)(5,2,90)(5,3,90)
4 (60) (1,2,90)(1,3,120)(1,4,90)(2,1,40)(2,2,60)(2,4,10)(3,1,90)(4,1,120)(4,2,120)(5,1,90)(5,2,90)(5,3,120)

3 1 1 (40) (1,1,90)(1,2,90)(1,3,90)(2,1,90)(2,2,90)(2,3,120)(2,4,120)(3,1,10)(3,2,60)(3,3,40)(4,1,120)(4,2,90)(5,2,120)(5,3,120)
2 (80) (1,1,90)(1,3,120)(2,2,120)(2,3,90)(3,1,10)(3,2,60)(5,1,120)(5,2,120)(5,3,90)
3 (80) (1,3,120)(1,4,90)(2,2,90)(3,1,10)(3,3,40)(4,1,90)(5,3,90)
4 (60) (1,2,120)(1,3,120)(1,4,90)(2,1,120)(2,2,120)(2,4,120)(3,1,20)(4,1,120)(4,2,90)(5,1,120)(5,2,120)(5,3,90)

2 1 (60) (1,1,120)(1,2,120)(1,3,120)(2,1,90)(2,2,120)(2,3,120)(2,4,120)(3,1,40)(3,2,20)(3,3,60)(4,1,90)(4,2,90)(5,2,90)(5,3,90)
2 (60) (1,1,90)(1,3,120)(2,2,120)(2,3,120)(3,1,60)(3,2,20)(5,1,120)(5,2,120)(5,3,90)

3 1 (60) (1,1,90)(1,2,90)(1,3,90)(2,1,120)(2,2,120)(2,3,90)(2,4,120)(3,1,60)(3,2,60)(3,3,10)(4,1,90)(4,2,120)(5,2,90)(5,3,120)
3 (80) (1,3,90)(1,4,120)(2,2,90)(3,1,60)(3,3,10)(4,1,120)(5,3,120)

4 1 1 (60) (1,1,90)(1,2,120)(1,3,90)(2,1,90)(2,2,90)(2,3,90)(2,4,120)(3,1,120)(3,2,90)(3,3,120)(4,1,10)(4,2,40)(5,2,120)(5,3,90)
3 (80) (1,3,120)(1,4,90)(2,2,120)(3,1,90)(3,3,90)(4,1,20)(5,3,90)
4 (40) (1,2,90)(1,3,120)(1,4,90)(2,1,120)(2,2,90)(2,4,120)(3,1,90)(4,1,10)(4,2,60)(5,1,90)(5,2,90)(5,3,90)

2 1 (80) (1,1,120)(1,2,120)(1,3,120)(2,1,90)(2,2,120)(2,3,90)(2,4,90)(3,1,90)(3,2,90)(3,3,120)(4,1,40)(4,2,10)(5,2,90)(5,3,120)
4 (80) (1,2,90)(1,3,120)(1,4,90)(2,1,90)(2,2,120)(2,4,90)(3,1,120)(4,1,60)(4,2,20)(5,1,90)(5,2,90)(5,3,120)

5 1 2 (60) (1,1,90)(1,3,120)(2,2,120)(2,3,90)(3,1,120)(3,2,120)(5,1,10)(5,2,40)(5,3,40)
4 (40) (1,2,90)(1,3,90)(1,4,120)(2,1,120)(2,2,120)(2,4,90)(3,1,90)(4,1,90)(4,2,90)(5,1,20)(5,2,60)(5,3,40)

2 1 (40) (1,1,90)(1,2,120)(1,3,90)(2,1,90)(2,2,120)(2,3,90)(2,4,90)(3,1,120)(3,2,120)(3,3,90)(4,1,120)(4,2,120)(5,2,10)(5,3,60)
2 (40) (1,1,120)(1,3,90)(2,2,120)(2,3,90)(3,1,120)(3,2,120)(5,1,40)(5,2,20)(5,3,60)
4 (60) (1,2,120)(1,3,90)(1,4,90)(2,1,120)(2,2,120)(2,4,90)(3,1,120)(4,1,120)(4,2,90)(5,1,60)(5,2,10)(5,3,40)

3 1 (80) (1,1,90)(1,2,120)(1,3,90)(2,1,90)(2,2,90)(2,3,90)(2,4,90)(3,1,120)(3,2,90)(3,3,120)(4,1,90)(4,2,120)(5,2,60)(5,3,10)
2 (40) (1,1,90)(1,3,90)(2,2,90)(2,3,90)(3,1,120)(3,2,120)(5,1,40)(5,2,60)(5,3,20)
3 (80) (1,3,90)(1,4,90)(2,2,90)(3,1,120)(3,3,120)(4,1,120)(5,3,10)
4 (60) (1,2,120)(1,3,120)(1,4,90)(2,1,90)(2,2,90)(2,4,90)(3,1,120)(4,1,120)(4,2,120)(5,1,60)(5,2,60)(5,3,20)

S∗o,j,m is the setup time for o of job j on machine m if this operation is the first operation on this machine.

So,j,m,o′,j′ is the setup time for operation o of job j on machine m if operation o′ of job j′ is the last operation on machine m.
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3.2.1. Mathematical Model

Model Parameters and Variables:

Following the problem description in section 3.2, below is the MILP model for the FJSP

that we used to test the Two-Stage Genetic Algorithm performance in Defersha and

Rooyani (2020) as it was originally developed by Defersha and Chen (2010b):

Indexes and Input Data:

Bj Batch size of job j

Tm,j,o Unit process time of operation o on machine m

Dm Release date of machine m.

Rm Maximum number of production runs of machine m where production runs

are indexed by r = 1, 2, ...., Rm.

S∗o,j,m Setup time of operation o of job j on machine m if operation o is the first

operation to be processed on machine m

So,j,m,o′,j′ Setup time of operation o of job j on machine m where operation o′ of job

j′ is operation processed immediately before

Ω Large positive number.

Variables:

Continuous Variables:

Cmax Makespan of the schedule.

ĉm,r Completion time of run r of machine m.

co,j,m Completion time of operation o of job j on an eligible machine m.

Binary Variables:
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Ao,j A binary data equal to 1 if the setup of operation o of job j is attached

(non-anticipatory), or 0 if this setup is detached (anticipatory).

xm,r,j,o Binary variable that takes the value 1 if the run r on machine m is assigned

to operation o of job j, 0 otherwise.

zm,r Binary variable that is equal to 1 if run r of machine m has been assigned

to any operation, 0 otherwise.

Objective Minimize the makespan:

Z = cmax (3.1)

Subject to:

cmax ≥ co,j,m; ∀(o, j,m) (3.2)

ĉr,m ≥ co,j,m + Ω · xr,m,o,j − Ω; ∀(r,m, o, j) (3.3)

ĉm,r ≤ co,j,m − Ω · xr,m,o,j + Ω; ∀(r,m, o, j) (3.4)

ĉ1,m −Bj · To,j,m − S∗o,j,m − Ω · x1,m,o,j + Ω ≥ Dm; ∀(m, o, j) (3.5)

ĉr,m −Bj · To,j,m − So,j,m,o′,j′ − Ω · (xr,m,o,j + xr−1,m,o′,j′) + 2Ω ≥ ĉr−1,m;

∀(r,m, o, j, o′, j′)|(r > 1) & ((o, j) 6= (o′, j′)) (3.6)

ĉ1,m −Bj · To,j,m − S∗o,j,m · Ao,j − Ω · (x1,m,o,j + xr′,m′,o−1,j) + 2Ω ≥ ĉr′,m′ + Lo,j;

∀(m, r′,m′, o, j)|((1,m) 6= (r′,m′)) & (o > 1) (3.7)
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ĉr,m −Bj · To,j,m − So,j,m,o′,j′ · Ao,j − Ω · (xr−1,m,o′,j′ + xr,m,o,j + xr′,m′,o−1,j)

+3Ω ≥ ĉr′,m′ + Lj,o;

∀(r,m, r′,m′, o, j, o′, j′)|(r > 1) & (o > 1) & ((r,m) 6= (r′,m′)) & ((o, j) 6= (o′, j′)) (3.8)

xr,m,o,j ≤ Po,j,m; ∀(r,m, o, j) (3.9)

M∑
m=1

Rm∑
r=1

xr,m,o,j = 1; ∀(o, j) (3.10)

J∑
j=1

Oj∑
o=1

xr,m,o,j = zr,m; ∀(r,m) (3.11)

zr+1,m ≤ zr,m; ∀(r,m) (3.12)

xr′,m,o′,j ≤ 1− xr,m,o,j; ∀(r, r′,m, o, j, o′)|(o′ > o) & (r′ < r) (3.13)

xr′,m,o′,j ≤ 1− xr,m,o,j; ∀(r, r′,m, o, j, o′)|(o′ < o) & (r′ > r) (3.14)

xr,m,o,j and zr,m are binary (3.15)

The objective function of this model (Eq. (3.1)) is minimizing the makespan that

is calculated through Eq. (3.2). Eqs. (3.3) and (3.4) calculate the completion time of

each step of the production process (co,j,m) that is equal to the completion time of the

specific run of machine m that the job is assigned. Eqs. (3.5) and (3.6) determine the

completion time of the first run (ĉ1,m) and subsequent runs of the machine (ĉr,m) based

on its previous run. Eqs. (3.5) and (3.6) considered setup time regardless of its detached

or attached nature since both types take time from the machine between two consequent

runs. While we only consider the attached setup time (Aj,o =1) when we calculate the
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completion time of each run of the machine based on the previous operation of the job

through Eqs. (3.7) and (3.8). Eqs. (3.9) and (3.10) assure that operation o of job j has

been assigned to one run of the capable machine m (Po,j,m = 1). Eqs. (3.11) and (3.12)

assure only one operation, at most, is assigned to run r of machine m only if the previous

run of that machine is already assigned. Eqs. (3.13) and (3.14) secure the feasibility

of machine assignment by stating if two operations of a specific job are assigned to a

specific machine, the earlier operation is assigned to an earlier run and not the other

way.

3.3. Two-Stage Genetic Algorithm (2SGA)

Since its introduction in 1970 by Taylor (1994), genetic algorithm has gained sprawl-

ing popularity in solving a wide range of complex problems in different disciplines. A

significantly large number of researchers have also applied genetic algorithms to solve

very diverse problems in manufacturing systems design and operation. It has also been

widely preferred by researchers to solve FJSP problems. In a classical job shop schedul-

ing problem, an operation of a job can only be assigned to a designated machine. Given

the assignments of operations to machines, the problem is to determine the sequences

of the operations on each machine. In a flexible job-shop scheduling problem (FJSP),

on the other hand, an operation can be assigned to one of a set of eligible machines.

The problem is, therefore, to simultaneously determine both the assignment of opera-

tions to machines and their sequences. The common approach to the genetic search is

to determine both the assignment and the sequencing of the operations simultaneously

through a random process guided by the principles of natural selection and evolution.

We develop a Two-Stage Genetic Algorithm with the first stage having solution encoding

and decoding different from the common approaches discussed in the previous section.

In our proposed Two-Stage Genetic Algorithm approach, the first stage encoding only

dictates the sequence in which the operations are considered for assignment. While in

the second stage, starting from the solutions of the first stage, the encoding follows the
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common approach of the genetic algorithm for FJSP and the genetic search determines

both the assignment and the sequencing of the operations simultaneously.

3.3.1. Solution Encoding and Decoding

Solution encoding is the kernel of a GA to solve a problem at hand. Gao et al. (2006)

stated that primary determinants of a GA’s success or failure are the coding by which

its genotypes represent solutions and the interaction of the coding with the GA’s recom-

bination and mutation operators. In the past several decades, three closely interrelated

solution encodings have been widely used in literature to solve many FJSP variants. In

the following subsections, we present those commonly used solution encodings, and the

modifications we propose to accelerate the genetic algorithm by dividing the search into

two stages.

As we discussed in a classical job shop scheduling problem, an operation of a job

can only be assigned to a designated machine, so we have only determined the sequences

of the operations on each respective machine (sequencing problem). In a flexible job-

shop scheduling problem, on the other hand, operations should be assigned to one eligible

machine out of a set (assignment problem) prior to the sequencing problem. Accordingly,

the solution encodings of many genetic algorithms developed in literature have two

parts: one part encodes the assignment decision and the other the sequencing decision.

So the genetic search can determine both assignment and sequencing of the operations

simultaneously through a random process guided by the principles of natural selection

and evolution. This solution encoding has been proposed by one of the early studies

of GA for FJSP by Chen et al. (1999). Figure 3.1 depicts three interrelated solution

representations that appeared in many articles, reporting the use of a genetic algorithm

for FJSP. These solution representations correspond to an arbitrarily generated solution

for Problem-1 which has a total of 16 operations.

The chromosomal encoding in Figure 3.1-(a) has two segments. The number of

genes in each segment is equal to the total number of operations. The left-hand-side

segment (LHS-Segment) has genes that are arranged in the natural order of the jobs
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LHS‐Segment (Machine/Operation Assignment)  RHS‐Segment (Operation Sequencing) 
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

𝐽   𝐽   𝐽   𝐽   𝐽   𝑗, 𝑜 
𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂  

2  1  2  3  1  2  2  4  4  2  3  4  1  4  4  4  1,1  2,1  1,2  2,2  5,1  5,2  5,3  1,3  2,3  1,4  3,1  4,1  3,2  3,3  2,4  4,2 

The gene takes the index of one of the eligible 
machines of the corresponding operation 

A given 𝒋 occurs 𝑶𝒋 number of times whereas a  
specific combination  𝒋, 𝒐  appears only once. For any 
given 𝒋, the gene  𝒋, 𝒐  shall be to the left of the gene  
𝒋, 𝒐′  if 𝒐 𝒐′. 

(a)

LHS‐Segment (Machine/Operation Assignment)  RHS‐Segment (Operation Sequencing) 
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

𝐽   𝐽   𝐽   𝐽   𝐽   𝑗 
𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂   𝑂  

2  1  2  3  1  2  2  4  4  2  3  4  1  4  4  4  1  2  1  2  5  5  5  1  2  1  3  4  3  3  2  4 

A particular 𝒋 occurs 𝑶𝒋 times where 𝑶𝒋 is the number of operations of job 𝒋 . 
The first occurrence of a particular 𝒋 corresponds to the first operation of that 
job, the second occurrence to the second operation, and so on. 

The gene takes the index of one of the eligible 
machines of the corresponding operation 

(b)

This representation has only one segment 
1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 

 𝑗, 𝑜 , 𝑚 

1,1,2  2,1,1  1,2,1  2,2,2  5,1,4  5,2,4  5,3,4  1,3,2  2,3,2  1,4,3  3,1,4  4,1,4  3,2,2  3,3,3  2,4,4  4,2,1 

For any given 𝒋, the gene  𝒋, 𝒐, 𝒎  shall be to the left of the gene  𝒋, 𝒐 , 𝒎′  if 𝒐 𝒐′. In a given  𝒋, 𝒐, 𝒎 , 
𝒎 can take a value of the index of one of the eligible machines of operation 𝒐 of job 𝒋. 

(c)

Figure 3.1: Three commonly used solution representations in applying GA for FJSP

and operations. Each gene corresponds to an operation and can take a value equal to

the index of one of the eligible machines of the corresponding operation. In effect, the

LHS-Segment encodes the machine-to-operation assignments of a particular solution of

the FJSP at hand. The decision of sequencing the operations on each machine is encoded

in the right-hand-side segment (RHS-Segment). In this segment, each gene takes a pair

of values (j, o). A particular j occurs Oj number of times where a specific combination

(j, o) appears only once. For any given j, the gene with a value (j, o) shall be located

to the left of the genes with values (j, o′) if o < o′. If two operations are assigned on
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the same machine by the LHS-Segment, the operation that occurs earlier in the RHS-

Segment takes precedence over the one that occurs later. Representations that have

similar structural interpretations as the one discussed above can be found in Lei (2012)

Chaudhry et al. (2013), Demir and Işleyen (2014), and Ishikawa et al. (2015).

The solution representation in Figure 3.1-(b) is very similar to the one shown in

Figure 3.1-(a). The difference is that a gene in the RHS-Segment of the encoding in

Figure 3.1-(b) can take only a single value j, the index of one of the jobs. A particular j

occurs Oj number of times, where the first occurrence corresponds to the first operation

of that job, the second occurrence corresponds to the second operation, and so on. With

this modification, unlike the one shown in Figure 3.1-(a), a random permutation of

the RHS-Segment of Figure 3.1-(b) always represents a feasible operation sequencing.

Solution representation with a similar structure as the one shown in Figure 3.1-(b)

appeared in many articles which include Gao et al. (2006, 2007, 2008), Gholami and

Zandieh (2009), Lei (2010), Wang et al. (2010), Zhang et al. (2011), Ida and Oka (2011),

Teekeng and Thammano (2012), and Driss et al. (2015).

The solution encoding in Figure 3.1-(c), combines the LHS- and RHS-Segments of

the previous solution encoding into one segment where a gene can take a triple (j, o,m)

where m is the index of one of the eligible machine to process operation o of job j. A

gene that contains a particular j occurs Oj number of times. Moreover, for a given j, a

gene with a value (j, o,m) must occur earlier in the sequence than the gene with value

(j, o′,m′) if o < o′ regardless of the values of m and m′. This solution representation was

first proposed in Kacem (2003) and subsequently used in many other articles including

Zribi and Borne (2005), Defersha and Chen (2010b), Pezzella et al. (2008), De Giovanni

and Pezzella (2010), Al-Hinai and Elmekkawy (2011), and Rohaninejad et al. (2015).

All the solution encodings in Figure 3.1 represent the same assignment and se-

quencing decision shown in Table 3.3. Nevertheless, due to their differences in structure,

crossover and mutation operators need to be tailored to conform to the respective repre-

sentation. The determination of the actual starting and finishing time of the operations

and the calculation of the makespan is accomplished through a decoding procedure which
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is also referred to as fitness evaluation. The decoding procedure corresponding to the

solution representation in Figure 3.1-(c) for an FJSP problem with sequence-dependent

setup time, attached/detached nature of setups, machine release date, and lag time was

presented in Defersha and Chen (2010b). For better comprehension, the general steps

of this decoding procedure are outlined in Figure 3.2. In this decoding procedure, the

variable l is an index for the location of a gene in the solution encoding in Figure 3.1-

(c). This index runs from 1 to the total number of operations. The notation Gene[l]

represents the content of the gene at location l in the chromosome. The variable rm

is a counter for the number of runs of machine m so far assigned to operations and it

increases by one every time an operation is assigned to this machine. In this decoding

process, whenever an operation is assigned to a machine, the completion time is deter-

mined using the procedure outlined in Figure 3.3. In Chapter 3 we will describe the

novel Two-Stage Genetic Algorithm structure that uses two different solution encodings

in two stages (described in 3.3.1). Stage one has a similar structure to the RHS-Segment

of the representation in Figure 3.1-(a) (without the LHS-Segment). Hence the assign-

ment of the operations to machines is not directly encoded. But stage two utilizes the

chromosome encoding as Figure 3.1-(c).

Table 3.3: Assignment and sequencing decision for the solution encoded in Figure 3.1

Machine Assignment and Sequencing

1 (J2, O1)(J1, O2)(J4, O2)
2 (J1, O1)(J2, O2)(J1, O3)(J2, O3)(J3, O2)
3 (J1, O4)(J3, O3)
4 (J5, O1)(J5, O2)(J5, O3)(J3, O1)(J4, O1)(J2, O4)

In this research, we develop a Two-Stage Genetic Algorithm with the first stage

having solution encoding and decoding different from the common approaches discussed

in the previous section. Unlike those common approaches, the solution representation

does not explicitly encode operations assignment and sequencing. This solution repre-

sentation is illustrated in Figure 3.4-(a). It has a similar structure to the RHS-Segment

of the representation in Figure 3.1-(a) (without the LHS-Segment). Hence, in this repre-

sentation, the assignment of the operations to machines is not directly encoded. Without
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Step 1. Set l = 1. Set rm = 0;∀m.

Step 2. Set (j, o,m) = Gene[l] of the chromosome in Figure 3.1-(c).

Step 3. Set rm = rm + 1.

Step 4. Assign operation o of job j to the (rm)th run of machine m.

Step 5. Calculate the completion time co,j,m using the procedure described
in Figure 3.3.

Step 6. If l is equal to the total number of operations, go to Step 8; otherwise,
go to Step 7

Step 7. Set l = l + 1. Go to Step 2.

Step 8. Calculate the makespan of the schedule as cmax =
max{co,j,m; ∀(o, j,m)}.

Figure 3.2: A decoding procedure for the solution representation in Figure 3.1-(c).

the assignment decision, we also cannot see the sequencing of operation on the machines

directly from the chromosome. Instead, the chromosome provides the order (from left

to the right of the chromosome) in which we consider the operations for assignment

and sequencing during the decoding procedure outlined in Figure 3.5. In this decoding

procedure, whenever we consider an operation for assignment, we choose the machine

that can complete this operation sooner while taking into account the operations that

we already assigned to the various machines. This greedy nature of the first stage ac-

celerates the search and enables the genetic algorithm to find good-quality solutions in

a short computational time.

The second stage, starting from the final population of the first stage, follows

the standard approach of genetic algorithm for FJSP using a solution representation

shown in Figure 3.4-(b) where both operation assignment and sequencing are directly

encoded. Therefore, during this stage of the search, both assignment and sequencing are

determined through a random process. Thus, the second stage enables the algorithm to

search the entire solution space by including solutions that might have been excluded

because of the greedy nature of the first stage. During the transition from the first

to the second stage, all the final solutions of the first stage are augmented by their
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If an operation o of job j is to be assigned on machine m, its completion time
co,j,m is calculated based on one of the following four cases:

• Case 1:
(a) Operation o of job j is the first operation to be assigned on machine

m (i.e., rm = 1), and

(b) o = 1.

co,j,m = Dm + S∗o,j,m +Bj × To,j,m

• Case 2:

(a) Operation o of job j is the first operation to be assigned on machine
m (i.e., rm = 1),

(b) o > 1, and

(c) Operation o− 1 of job j is assigned on machine m′.

co,j,m = max{Dm + (1−Ao,j)× S∗o,j,m , co−1,j,m′ + Lo,j}+Bj × To,j,m +
Ao,j × S∗o,j,m
• Case 3:

(a) Operation o of job j is not the first operation to be assigned on
machine m (i.e., rm > 1),

(b) Operation o′ of job j′ is the operation to be processed immediately
before operation o of job j on machine m (i.e., Operation o′ of job j′

was assigned to run rm − 1 of machine m), and

(c) o = 1.

co,j,m = co′,j′,m + So,j,m,o′,j′ +Bj × To,j,m
• Case 4:

(a) Operation o of job j is not the first operation to be assigned on
machine m (i.e., rm > 1),

(b) Operation o′ of job j′ is assigned immediately before operation o of
job j on machine m (i.e., Operation o′ of job j′ was assigned to run
rm − 1 of machine m),

(c) o > 1, and

(d) Operation o− 1 of job j is assigned on machine m′.

co,j,m = max{co′,j′,m + (1 − Ao,j) × So,j,m,o′,j′ , co−1,j,m′ + Lo,j} + Bj ×
To,j,m + Ao,j × So,j,m,o′,j′

Figure 3.3: Calculation of completion time co,j,m in an FJSP with sequence dependent setup,
detached/attached nature of setup, machine release date and lag time (adopted from Defersha and

Chen (2010b))
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respective operation assignments as determined by the decoding procedure in Figure 3.5

and become the initial population for the second stage. This stage uses the decoding

procedure outlined in Figure 3.2.

Solution Encoding for the First Stage of the Search 
1  2  3  4  5  6  7  8  9	 10	 11	 12	 13	 14	 15	 16	

	 , 		

1,1  2,1  1,2  2,2  5,1  5,2  5,3  1,3  2,3  1,4  3,1  4,1  3,2  3,3  2,4  4,2 

 

    (a) First Stage

Solution Encoding for the Second Stage of the Search 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 �, � , �  

1,1,2 2,1,1 1,2,1 2,2,2 5,1,4 5,2,4 5,3,4 1,3,2 2,3,2 1,4,3 3,1,4 4,1,4 3,2,2 3,3,3 2,4,4 4,2,1 

 

 (b) Second Stage

Figure 3.4: Solution representation for the proposed Two-Stage GA for FJSP

3.3.2. Genetic Operators

Imitating the natural evolution of organisms is the underlying mechanism of the ge-

netic algorithm. In doing so, it evolves a population of solutions using various genetic

operators, which can be classified into three main categories: selection, crossover, and

mutation. The selection operator is used to mimic Darwin’s principle of the survival

of the fittest, so better-fit individuals have more chances to survive and be carried

forward to the next generation leaving behind the less fit ones. This operator can be

applied in several different schemes, such as (i) Roulette Wheel, (ii) Ranked, (iii) Trun-

cation, (iv) Boltzmann, (v) Elitism, and (vi) K-ways Tournament. As discussed at 2.5.1,

K-ways Tournament selection is superior to the rest of the popular selection techniques

and therefore, we used it in the Two-Stage Genetic Algorithm. At k-way tournament k

chromosomes are randomly selected, then the tournament selects the chromosome with

the best fitness and inserts it into the reproduction pool. This process will be repeated

until the reproduction pool size is equal to the population size. In this process, the

selection focus of the fittest can be increased or decreased by increasing or decreasing

the value of k. This adjustment is needed to strike a balance between exploitation (when
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Step 1. Set l = 1. Set rm = 0;∀m.

Step 2. Set (j, o) = Gene[l] of the chromosome in Figure 3.4-(a).

Step 3. Temporarily set rm = rm+1 for each eligible machine m of operation
o of job j (for each m such that po,j,m = 1). Using the procedure
described in Figure 3.3, calculate the completion time of operation
o of job j corresponding to each of these machines.

Step 4. Using the results from Step 3, select the machine that can complete
the operation sooner.
Say this machine is machine m∗.

Step 5. Assign operation o of job j to the (rm∗)
th run of machine m∗.

Step 6. Assign the completion time calculated in Step 3 corresponding to
machine m = m∗ to the variable co,j,m.

Step 7. Set rm = rm − 1 corresponding to all the other machines considered
in Step 3 but not selected to processes operation o of job j in Step
4.

Step 8. If l is equal to the total number of operations, go to Step 10; other-
wise go to Step 9

Step 9. Set l = l + 1. Go to Step 2. .

Step 10. Calculate the makespan of the schedule as cmax =
max{co,j,m; ∀(o, j,m)}.

Figure 3.5: A decoding procedure for the solution representation in Figure 3.4-(a) - first stage of the
Two-Stage Genetic Algorithm.
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k is large) and exploration (when k is small).

Once the selection process is completed, the individuals in the mating pool are

randomly paired, and on each pair, crossover operators are applied. Then, the result-

ing children undergo different mutation operators and finally constitute the population

for the next generation. In the proposed Two-Stage Genetic Algorithm, we used several

crossover and mutation operators that are tailored to FJSP and the proposed Two-Stage

Genetic Algorithm. These operators are Single-Point Crossover Operator (SCO), Job

Crossover Operator(JCO), Assignment Crossover Operator (ACO), Operations Swap-

ping Mutation (OSM), and Assignment Altering Mutation (AAM).

The SCO first selects an arbitrary crossover point on the parent chromosomes.

Then, it creates a child chromosome by copying all the genes that lie to the left of

the crossover point from one parent and completes the remaining genes in the sequence

they appear in the other parent. Figure 3.6 illustrates the creation of Child-1 using

this operator. Child-2 is created by preserving the part of the chromosome of Parent-2

that lies to the left of the crossover point. SCO is applied with a probability p1. The

JCO, applied with a probability p2, randomly selects some jobs and then copies all

the genes that correspond to these jobs from Parent-1 to Child-1, as shown in Step-1

of Figure 3.7. In Step-2, it completes the child by copying the missing genes in the

order they appear in Parent-2. At the same time, this operator also creates Child-2

(not shown in the figure) by starting Step-1 from Parent-2. Here, it is essential to note

that both SCO and JCO ensure that a gene with a specific value (j, o) appears only

once, and earlier in the chromosome than a gene with values (j, o′) if o < o′. ACO

exchanges the machine assignment of the operations between two parent chromosomes

with a probability p3. A two-step creation of Child-1 using this operator has been

illustrated in Figure 3.8, whereas Child-2 is created by starting Step-1 from Parent-2.

Once a child chromosome is created, it will be subjected to mutation operators. OSM

randomly peaks two adjacent genes on a child chromosome and swaps their location

as long they belong to different jobs. AAM randomly selects a gene and changes the

machine assignment of the corresponding operation to another eligible machine. The
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mutation operators AAM and OSM are applied with probabilities p4 and p5, respectively.

In the proposed Two-Stage GA, the operators SCO, JCO, and OSM are all applicable

during both the first and second stages, except that each gene in a chromosome has

three elements during the second stage. In contrast, ACO and AAM are applicable only

during the second stage of the search.

5, 23, 3

2, 44, 1 3, 3 1, 4 4, 23, 23, 1 2, 3

4, 1 3, 21, 1 5, 32, 32, 1 1, 31, 2 1, 43, 1 2, 2 4, 25, 1 2, 4

1, 2 1, 3

1, 1 2, 1 1, 2 2, 2 5, 1 5, 2 5, 3 1, 3 2, 3 1, 4 3, 1 4, 1 3, 2 3, 3 2, 4 4, 2

2, 2 5, 32, 1 5, 1 5, 21, 1

Parent 1

j , o

Child 1

Parent 2

Arbitrarily Selected Crossover Point

Figure 3.6: Single-Point Crossover Operator (SCO)

3.4. Numerical Studies

In this section, we present numerical studies to shed light on the features of the proposed

Two-Stage GA and demonstrate its superiority over the Regular Genetic Algorithm

(RGA). Solution quality, convergence speed, and algorithm robustness were used as the

bases of comparison.

3.4.1. Solution Encoding/Decoding Comparison

The solution encoding and the accompanying decoding procedure shown in Figures 3.4-a

and 3.5, respectively, are the key inventions that enable the design of an efficient Two-

Stage GA for FJSP. In this section, we illustrate and compare a schedule that results

from this new encoding-decoding pair to that from the conventional one.
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4, 1 2, 1 5, 32, 45, 2

4, 21, 1 2, 15, 1

5, 1 4, 2

2, 2 1, 43, 1 4, 1

2, 3

3, 33, 2 5, 2 5, 32, 3

2, 2

1, 31, 2 2, 4

1, 3

1, 1

1, 4

3, 2

4, 21, 1 2, 2

3, 3

1, 2 4, 1

1, 3

5, 1 5, 2 2, 31, 32, 1 5, 3

3, 3

3, 1 3, 3

1, 1

1, 2 1, 4

3, 1

3, 1

1, 2

2, 43, 2

1, 4

3, 2

Parent 1

j , o

Parent 2

Child 1

Job 1 and Job 3 were ranomly selected. 

Step 1

Step 2

Step 1:  Copy the genes corresponding to all the operations of arbitrarily selected Jobs, while 
preserving their location in the first parent.

Step 2:  Complete the missing genes in the sequence they appear in the other parent.

Figure 3.7: Job Crossover Operator (JCO)

412

4,2,13,3,3 1,4,32,1,1 2,2,41,1,2 1,2,13,1,2 3,2,1 1,3,4 2,4,4 5,3,15,1,4 4,1,3 2,3,1 5,2,4

1 34 211 33444 11 2,4,3,2,

1,3,*

1,1,2 2,1,4 1,2,4 2,2,3 5,1,2 5,2,2 5,3,2 1,3,4 2,3,2 1,4,4 3,1,1 4,1,1 3,2,1 3,3,1 2,4,1 4,2,4

4,2,*2,3,*

1,1,

5,1,* 2,4,*2,1,* 5,2,*1,2,* 5,3,* 4,1,* 3,2,* 3,3,*1,1,* 2,2,* 1,4,* 3,1,*

1,2, 3,3,5,1, 3,1,2,3,2,1, 4,1,1,4,1,3,5,2,2,2, 4,2,5,3,

j , o , m

Step 2: The machine assignment of the operations are copied from Parent-2.

Parent 1

Child 1

Parent 2

Step 1: Operations are copied from Parent-1 to Child-1 without machine assignment.

Figure 3.8: Assignment Crossover Operator (ACO)
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A randomly generated solution based on the conventional approach with chromo-

some encoding of (o, j,m) as it is presented in Figure 3.1-c for Problem-1 was decoded

using its corresponding decoding procedure. A partial illustration of the decoding pro-

cedure is outlined in the second column of Table 3.4. The gene at location l = 1 has

a value (j, o,m) = (1, 1, 2). Hence operation 1 of job 1 is the first operation to be

assigned to machine 2. Its completion time will be calculated under case-1 of the pro-

cedure described Figure 3.3 using the equation co,j,m = Dm + S∗o,j,m + Bj × To,j,m. The

value of the gene at l = 2 is (j, o,m) = (2, 1, 1). In this case, the first operation of

job 2 is the first operation for machine 1, and its completion time will be calculated

under case-1 of Figure 3.3. At location l = 3 the gene has a value (j, o,m) = (1, 2, 1).

In this case, machine 1 was previously assigned to another operation (j′, o′) = (2, 1),

and operation o = 2 is not the first operation for the job j = 1. Hence, the com-

pletion time needs to be calculated under case 4 of Figure 3.3 using the equation

co,j,m = max{co′,j′,m+(1−Ao,j)×So,j,m,o′,j′ , co−1,j,m′+Lo,j}+Bj×To,j,m+Ao,j×So,j,m,o′,j′ .

This process continues until all the genes at location l = 16 are processed. The result-

ing schedule is depicted in a Gantt chart in Figure 3.9-i, where the makespan is 2400

minutes. The Gantt chart also shows other features of the problem considered, such as

machine release date, overlapping of detached setups with operations, and lag time. The

detailed numerical values of the Gantt chart are given in Table 3.5.

The same randomly generated solution, shown in Figure 3.4-a, where only the

machine assignments are stripped-off, was decoded using the procedure in Figure 3.5.

A partial illustration of the decoding procedure is outlined in the third column of Table

3.4. The value of the gene at location l = 1 is (j, o) = (1, 1). Hence, operation o = 1

of job j = 1 is the first operation to be considered for assignment. Machines 1 and

2 are the two alternative machines for this operation. Since o = 1 and the machines

were not assigned previously, the completion time is calculated under Case 1 of Figure

3.3. As it can be seen from row-1-column-3 of Table 3.4, machine 2 can complete this

operation sooner. Hence, the operation is assigned to machine 2. The processing of the

gene at locations l = 2, l = 3 and l = 4 are detailed in this table where the operations
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(j2, o1) and (j2, o1) are assigned to machine 4, and operation (j2, o1) is assigned to

machine 3. This procedure continues until all the genes are processed. The resulting

schedule is shown in Figure 3.9-ii with a makespan of 1637.5 minutes, which is about

38% reduction compared to the one resulting from the conventional approach. This

improvement leads to a high-quality initial population and a rapid convergence rate of

the proposed algorithm, as it is illustrated in the following sections.

3.4.2. Initial Population Quality

The quality of the initial population of an evolutionary algorithm is a crucial factor that

affects its ability to find good solutions with less computational time (Bajer et al., 2016;

Rahnamayan et al., 2007). If the initial population is constituted of good individuals, it

may lead the search toward promising regions of the problem space from the get-go. In

this section, we compare the qualities of the initial populations generated for different

problem sizes by (i) a purely random approach, (ii) Approach by Localization (AL), and

(iii) our new solution encoding-decoding mechanism. AL is the method initially created

by Kacem et al. (2001) to generate a promising initial population in solving FJSP using

evolutionary optimization, then was extended in Defersha and Chen (2010b) to account

for sequence dependent setup time and machine release date (as it is used here). The

comparison is accomplished by plotting the histograms of the makespan of the initial pop-

ulations. Figure 3.10-a is the histogram for one thousand initial solutions for Problem-1.

The average makespan of the randomly generated population is 2801 minutes. This

average was reduced by 17.2 % and 38.1% by using the AL initialization method and

our new approach, respectively. This clearly shows that our encoding-decoding scheme

greatly improves the quality of the initial population. A much more interesting result

was obtained when we repeat this analysis by increasing the problem size (see Figure

3.10). As we move from Problems 1, 2, 3, to 4, the reductions of the average makespan

by the AL method fall from 17.2, 9.2, 6.4, to 3.76%. This confirms that the improvement

using the AL method is rapidly lost as the problem size increases. Whereas, in using our

new approach, the average makespan reductions in the initial populations of Problems 1,
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Table 3.4: Partial illustration of the decoding procedure for the solutions representations depicted in
Figures 3.1-c and 3.4-a, corresponding to RGA and the first stage of 2SGA, respectively.

l RGA decoding 2SGA first stage decoding

1 Step 2: Set (j, o,m) = (1, 1, 2); Step
3: Increase the run counter of machine
2 by 1, i.e., r2 = r2 + 1 = 0 + 1 = 1;
Step 4: Assign operation 1 of job 1 to
run 1 of machine 2; Step 5: Calculate
the completion time c1,1,2 under Case
1 (rm = 1, o = 1)) in the procedure
described in Figure 3.3:
c1,1,2 = D2 + S∗1,1,2 + B1 × T1,1,2 =
0 + 80 + 45× 6.25 = 361.2;
Step 6: Since l < 16, go to the next
step; Step 7: Set l = l+1 = 1+1 = 2.
Got to Step 2;

Step 2: Set (j, o) = (1, 1); Step 3: Temporarily increase the run counters
of each of the two alternative machines for operation 1 of job 1 (machines
1 and 2) by 1, i.e., r1 = r1 + 1 = 0 + 1 = 1 and r2 = r2 + 1 = 0 + 1 = 1;
Step 4: Calculate the completion times c1,1,1 and c1,1,2 under Case 1
(rm = 1, o = 1)) in the procedure described in Figure 3.3:
c1,1,1 = D1 + S∗1,1,1 +B1 × T1,1,1 = 840 + 60 + 45× 6.75 = 1203.75;
c1,1,2 = D2 + S∗1,1,2 +B1 × T1,1,2 = 0 + 80 + 45× 6.25 = 361.2;
Steps 5 and 6: Since c1,1,2 < c1,1,2, machine 2 can complete this op-
eration sooner. Assign operation 1 of job 1 to run 1 of machine 2 with a
completion time of c1,1,2 = 361.2; Step 7: Reduce the run counter of the
unselected machine by 1, i.e., r1 = r1 − 1 = 1 − 1 = 0; Step 8: Since
l < 16, go to the next step; Step 9: Set l = l+ 1 = 1 + 1 = 2. Got to Step
2;

2 Step 2: Set (j, o,m) = (2, 1, 1); Step
3: Increase the run counter of machine
1 by 1, i.e., r1 = r1 + 1 = 0 + 1 = 1;
Step 4: Assign operation 1 of job 2 to
run 1 of machine 1; Step 5: Calculate
the completion time c1,2,1 under Case
1 (rm = 1, o = 1)) in the procedure
described in Figure 3.3:
c1,2,1 = D1 + S∗1,2,1 + B1 × T1,2,1 =
840 + 60 + 35× 5.00 = 1075.00;
Step 6: Since l < 16, go to the next
step; Step 7: Set l = l+1 = 2+1 = 3.
Got to Step 2;

Step 2: Set (j, o) = (2, 1); Step 3: Temporarily increase the run counters
of each of the two alternative machines for operation 1 of job 1 (machines
1 and 4) by 1, i.e., r1 = r1 + 1 = 0 + 1 = 1 and r4 = r4 + 1 = 0 + 1 = 1;
Step 4: Calculate the completion times c1,2,1 and c1,2,4 under Case 1
(rm = 1, o = 1)) in the procedure described in Figure 3.3:
c1,2,1 = D1 + S∗1,2,1 +B2 × T1,2,1 = 840 + 60 + 35× 5.0 = 1075.00;
c1,2,4 = D4 + S∗1,2,4 +B2 × T1,2,4 = 120 + 80 + 35× 5.0 = 375.00;
Steps 5 and 6: Since c1,2,4 < c1,2,1, machine 4 can complete this op-
eration sooner. Assign operation 1 of job 2 to run 1 of machine 4 with a
completion time of c1,2,4 = 375.00; Step 7: Reduce the run counter of the
unselected machine by 1, i.e., r1 = r1 − 1 = 1 − 1 = 0; Step 8: Since
l < 16, go to the next step; Step 9: Set l = l+ 1 = 2 + 1 = 3. Got to Step
2;

3 Step 2: Set (j, o,m) = (1, 2, 1); Step
3: Increase the run counter of machine
1 by 1, i.e., r1 = r1 + 1 = 1 + 1 = 2;
Step 4: Assign operation 1 of job 2 to
run 2 of machine 1; Step 5: Calculate
the completion time c2,1,1 under Case
4 (rm > 1, o > 1)) in the procedure
described in Figure 3.3:
c2,1,1 = max{c1,2,1 + (1 − A2,1) ×
S2,1,1,1,2 , c1,1,2+L2,1}+Bj×T2,1,1+
A2,1×S2,1,1,1,2 = max{1075.00 + (1−
1) × 90 , 361.25 + 0} + Bj × 4.25 +
A2,1 × 90 = 1356.25;
Step 6: Since l < 16, go to the next
step; Step 7: Set l = l+1 = 3+1 = 4.
Got to Step 2;

Step 2: Set (j, o) = (1, 2); Step 3: Temporarily increase the run counters
of each of the two alternative machines for operation 1 of job 1 (machines 1
and 4) by 1, i.e., r1 = r1 + 1 = 0 + 1 = 1 and r4 = r4 + 1 = 1 + 1 = 2; Step
4: Calculate the completion times c2,1,1 under Case 2 (rm = 1, o > 1))
and c2,1,4 under Case 4 (rm > 1, o > 1)) in the procedure described in
Figure 3.3:
c2,1,1 = max{D1 + (1−A2,1)×S∗2,1,1, c1,1,2 +L2,1}+B1×T2,1,1 +A2,1×
S∗2,1,1 = max{840 + (1−1)×60, 361.25 + 0}+ 45×4.5 + 1×60 = 1091.25

c2,1,4 = max{c1,2,4 + (1−A2,1)×S2,1,4,1,2, c1,1,2 +L2,1}+B1×T2,1,4 +
A2,1×S2,1,4,1,2 = max{375+(1−1)×90, 361.25+0}+45×4.5+1×90 =
667.50;
Steps 5 and 6: Since c2,1,4 < c2,1,1, machine 4 can complete this op-
eration sooner. Assign operation 2 of job 1 to run 2 of machine 4 with a
completion time of c2,1,4 = 667.50; Step 7: Reduce the run counter of the
unselected machine by 1, i.e., r1 = r1 − 1 = 1 − 1 = 0; Step 8: Since
l < 16, go to the next step; Step 9: Set l = l+ 1 = 3 + 1 = 4. Got to Step
2;

4 Step 2: Set (j, o,m) = (2, 2, 2); Step
3: Increase the run counter of machine
2 by 1, i.e., r2 = r2 + 1 = 1 + 1 = 2;
Step 4: Assign operation 2 of job 2 to
run 2 of machine 2; Step 5: Calculate
the completion time c2,2,2 under Case
4 (rm > 1, o > 1)) in the procedure
described in Figure 3.3:
c2,2,2 = max{c1,1,2 + (1 − A2,2) ×
S2,2,2,1,1 , c1,2,1 + L2,2} +
B2 × T2,2,2 + A2,2 × S2,2,2,1,1 =
max{361.25+(1−1)×120 , 1075.00+
0}+ 35× 6.5 + 1× 120 = 1422.50;
Step 6: Since l < 16, go to the next
step; Step 7: Set l = l+1 = 3+1 = 4.
Got to Step 2;

Step 2: Set (j, o) = (2, 2); Step 3: Temporarily increase the run counters
of each of the four alternative machines for operation 2 of job 2 (machines
1, 2, 3 and 4) by 1, i.e., r1 = r1 + 1 = 0 + 1 = 1, r2 = r2 + 1 = 1 + 1 = 2,
r3 = r3 + 1 = 0 + 1 = 1 and r4 = r4 + 1 = 2 + 1 = 3; Step 4: Calculate
the completion times c2,2,1 and c2,2,3 under Case 2 (rm = 1, o > 1)) and
c2,2,2 and c2,2,4 under Case 4 (rm > 1, o > 1)) in the procedure described
in Figure 3.3:
c2,2,1 = max{D1 +(1−A2,2)×S∗2,2,1, c1,2,4 +L2,2}+B2×T2,2,1 +A2,2×
S∗2,2,1 = max{840 + (1− 1)× 40, 375 + 0}+ 35× 6.75 + 1× 40 = 1116.25;

c2,2,2 = max{c1,1,2 + (1−A2,2)×S2,2,2,1,1, c1,2,4 +L2,2}+B2×T2,2,2 +
A2,2 × S2,2,2,1,1 = max{361.25 + (1− 1)× 120, 375.00 + 0}+ 35× 6.5 +
1× 120 = 722.50;
c2,2,3 = max{D3 +(1−A2,2)×S∗2,2,3, c1,2,4 +L2,2}+Bj×T2,2,3 +A2,2×
S∗2,2,3 = max{0 + (1− 1)× 80, 375.00 + 0}+ 35× 6.75 + 1× 80 = 691.25;

c2,2,4 = max{c2,1,4 + (1−A2,2)×S2,2,4,2,1, c1,2,4 +L2,2}+B2×T2,2,4 +
A2,2×S2,2,4,1,2 = max{667.5+(1−1)×90, 375.00+0}+35×6.50+1×90 =
985.00;
Steps 5 and 6: Since c2,2,3 < c2,1,m|m ∈ {1, 2, 4}, machine 3 can complete
this operation sooner. Assign operation 2 of job 2 to run 1 of machine 3 with
a completion time of c2,2,3 = 691.25; Step 7: Reduce the run counter of the
unselected machine by 1, i.e., r1 = r1−1 = 1−1 = 0, r2 = r2−1 = 2−1 = 1
and r4 = r4 − 1 = 3 − 1 = 2; Step 8: Since l < 16, go to the next step;
Step 9: Set l = l + 1 = 4 + 1 = 5. Got to Step 2;

This process continues until all the operation are assigned when l = 16.
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Figure 3.9: Gantt chart of the schedule corresponding to (i) the chromosome in Fig 3.1-c and the
decoding procedure in Figure 3.2, and (ii) the chromosome in Fig 3.4-a and the decoding procedure in

Figure 3.5.
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Table 3.5: The numerical values of the schedules shown in the Gantt chart of Figure 3.9

Machine Run Details for Fig 3.9-(i) Details for Fig 3.9-(ii)

m r (j, o) SB SE/PB PE (j, s, o) SB SE/PB PE

1 1 (2,1) 840.0 900.0 1075.0 (3,1) 840.0 880.0 1160.0
2 (1,2) 1075.0 1165.0 1356.3 (3,2) 1160.0 1200.0 1360.0
3 (4,2) 1356.3 1476.3 1663.8 (4,2) 1360.0 1450.0 1637.5

2 1 (1,1) 0.0 80.0 361.3 (1,1) 0.0 80.0 361.3
2 (2,2) 1075.0 1195.0 1422.5 (5,1) 361.3 451.3 613.8
3 (1,3) 1422.5 1542.5 1598.8 (5,2) 613.8 653.8 778.8
4 (2,3) 1598.8 1718.8 1902.5 (2 3) 778.8 898.8 1082.5
5 (3,2) 1902.5 2022.5 2182.5 NA NA NA NA

3 1 (1,4) 1558.8 1638.8 1728.8 (2,2) 375.0 455.0 691.3
2 (3,3) 2102.5 2222.5 2442.5 (5,3) 691.3 781.3 993.8
3 NA NA NA NA (3,3) 1280.0 1400.0 1620.0

4 1 (5,1) 120.0 160.0 347.5 (2,1) 120.0 200.0 375.0
2 (5,2) 347.5 407.5 545.0 (1,2) 375.0 465.0 667.5
3 (5,3) 545.0 605.0 830.0 (1,3) 667.5 707.5 775.0
4 (3,1) 830.0 920.0 1170.0 (1,4) 775.0 835.0 891.3
5 (4,1) 1170.0 1260.0 1357.5 (4,1) 891.3 981.3 1078.8
6 (2,4) 1942.5 2062.5 2193.8 (2,4) 1122.5 1242.5 1373.8

Note: SB, SE, PB, PE stand for setup begins, setup ends, processing begins, and processing ends, respectively.
NA means that a run is Not Assigned to an operation.

2, 3, and 4 are 38.1, 47.71, 52.13, and 49.47%, respectively, which enables the proposed

algorithm to archive a high-quality solution from the beginning of the search.

However, based on the histograms in Figure 3.10, one may argue that in our

approach, the diversity of the initial population is very poor, in particular as the problem

size increases. Nevertheless, it is important to note that the histograms show only the

distribution of the phenotype (makespan). The genotype (the sequence of the genes) of

each individual in the initial population in our approach is created with the same level of

randomness as that of the randomly generated population. The initial population is the

same as that of the randomly generated one, except that the machine assignments are

stripped off from each chromosome as they are determined by the decoding procedure.

83



Chapter 3. Two-Stage GA for FJSP

4
0

05

001

051

002

052

005 0001 0051 0002 0052 0003 0053 0004 005

1

NveDtSnaeM

00018.6341082

00012.2049132

00016.451337

M

yc
n

e
u

q
erF

))4x5 :1 melborP( napseka

N

modnaR

LA

dohteM we

N

modnaR

LA

dohteM we

8
0

001

002

003

004

0001 0002 0003 0004 0005 0006 0007 000

2

NveDtSnaeM

00014.5467445

00016.8061494

00015.491848

M

yc
n

e
u

q
erF

)02x01 :2 melborP( napseka

N

modnaR

LA

dohteM we

N

modnaR

LA

dohteM we

(a) (b)

1
0

001

002

003

004

005

0002 0003 0004 0005 0006 0007 0008 0009 00001 0001

3

NveDtSnaeM

00012.7479787

00019.9372737

00012.102177

M

yc
n

e
u

q
erF

)02x02 :3 melborP( napseka

N

modnaR

LA

dohteM we

N

modnaRLA

dohteM we

2
0

002

004

006

008

0001

0008 00001 00021 00041 00061 00081 00002 00022 00042 0006

1

NveDtSnaeM

0001372124902

0001771173102

00012.5911750

M

yc
n

e
u

q
erF

)02x05 :4 melborP( napseka

N

modnaR

LA

dohteM we

N

modnaRLA

dohteM we

(c) (d)

Figure 3.10: Distribution of the makespan of initial populations generated by (i) a purely random
approach, (ii) AL, and (iii) our new method.
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3.4.3. Preliminary Performance Assessment using Benchmark

Problems

We have chosen two sets of benchmark problems to illustrate the performance of our

proposed Two-Stage Genetic Algorithm (2SGA). Brandimarte (1993) introduced a set

of 10 problems with the number of jobs ranging from 10 to 20, the number of machines

ranging from 4 to 15, and the number of operations for each job ranging from 5 to

15. Hurink et al. (1994) developed 40 benchmark FJSP problems based on the classical

job shop scheduling instances of Adams et al. (1988). Each benchmark problem has

three different versions referred to as “edata”, “rdata”, and “vdata” in the order of

increasing the number of alternative machines for the operations. These instances are

well documented in Behnke and Geiger (2012). In this section, we used all the 40 “vdata”

problem instances (la01-la40) to provide a preliminary performance comparison of 2SGA

and RGA. On each problem instance, each algorithm was executed 40 times using 40

arbitrarily generated GA parameters shown in Table 3.6. In effect, we conducted a total

of 40×40×2 = 3200 experimental runs (i.e. 1600 test runs using each algorithm). Each

experimental run needs from 1 to 30 minutes depending on the problem size and the

GA parameter selected. Such a large number of experimental runs were possible using

several hundreds of concurrently available CPUs on a High-Performance-Computation

(HPC) cluster. We were able to conduct a very large number of test runs simultaneously.

The results of these test runs are summarized in Table 3.7.

The first four columns of this table provide the features of the benchmark problems.

An asterisk next to an upper bound (UP) indicates that the UP is also the global optimal

solution. The next four columns are for the computational results when solving these

benchmark problems using RGA. Each row in these four columns is a summary of 40 test

runs using the 40 GA parameter sets given in Table 3.6. Columns 5 and 6 indicate the

best and average objective function values. Column 7 provides the Global Optimal Hit

Rate (GOHR), which is the number of times RGA was able to find the global optimal

solution as we vary the GA parameter sets. The Average Optimality Gap (AOG) is
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indicated in Column 8. Columns 9 through 12 provide similar information for 2SGA.

The last column is for 2SGA’s Win Count, which is the number of times 2SGA gets a

better solution than RGA. From this table, it can be seen that 2SGA outperforms RGA

in many test runs. RGA was able to reach a global optimal solution for only 192 times,

whereas 2SGA gets an optimal solution for 504 times. The overall global optimality

gaps are 2.11% for RGA and 0.8% for 2SGA. Summing up the values in column 13, we

found that 2SGA was able to reach a better solution than RGA for 1177 times out of

a total of 1600 runs. Though not shown in the table, out of these 1600 test runs, RGA

wins only 149 times and both algorithms reach the same solutions for 274 times. By

comparing the average objective function values in Columns 6 and 10, we can see that

based on this performance measure 2SGA outperforms RGA in all the 40 benchmark

problems.

For solving MK series benchmark problems introduced by Brandimarte (1993), we

followed Li and Gao (2016) who reported 21 studies (including themselves) that solved

these problems with different approaches. Table 3.8 shows the number of jobs (N) and

the number of machines (M) of each problem and lists the best makespan reported by

each of those 21 studies. Columns 25 and 26 show the results of our regular GA and

2SGA approaches, respectively. The researches listed in column 3 to column 24 and their

approaches are: Tabu Search(TS) by Mastrolilli and Gambardella (2000), Learnable

Genetic Architecture(LEGA) by Ho et al. (2007), Hierarchical Optimization(HO) by

Zribi et al. (2007), Genetic Algorithm(GA) by Pezzella et al. (2008), Multi-Agent Tabu

Search Systems(MAS) by Ennigrou and Ghédira (2008), Hybrid Genetic and Variable

Neighborhood Descent Algorithm (HGVNA)by Gao et al. (2008), Artificial Immune

Algorithm (AIA) by Bagheri et al. (2010), Variable Neighbourhood Search (VNS) by

Amiri et al. (2010), Parallel Variable Neighborhood Search (PVNS) by Yazdani et al.

(2010), Hybrid Tabu Search (HTS) by Li et al. (2011), Discrepancy Search (DS) by

Ben Hmida et al. (2010), Hybrid Chaos Particle Swarm Optimization and GA (HAT)

Tang et al. (2011), Artificial Bee Colony (ABC) by Wang et al. (2012), Evolutionary
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Table 3.6: Randomly Generated Algorithm Parameters:

Crossover Probabilities Mutation Probabilities
Parameter
Set

Population
Size

Tournament
Size Fac-
tor

p1 p2 p3 p4 p5

1 2000 0.005 0.95 0.80 0.95 0.15 0.15
2 3000 0.010 0.80 0.65 0.95 0.05 0.10
3 2000 0.010 0.95 0.80 0.80 0.05 0.10
4 1000 0.005 0.80 0.65 0.65 0.10 0.05
5 1000 0.010 0.95 0.65 0.65 0.10 0.15
6 3000 0.015 0.65 0.95 0.95 0.10 0.15
7 3000 0.015 0.95 0.95 0.80 0.10 0.15
8 3000 0.015 0.65 0.65 0.95 0.10 0.15
9 1000 0.015 0.65 0.80 0.65 0.10 0.10
10 1000 0.005 0.95 0.95 0.65 0.15 0.05
11 2000 0.010 0.80 0.80 0.95 0.15 0.10
12 1000 0.005 0.65 0.65 0.80 0.15 0.10
13 1000 0.005 0.80 0.65 0.80 0.10 0.10
14 2000 0.005 0.80 0.95 0.95 0.10 0.15
15 2000 0.015 0.80 0.80 0.65 0.05 0.10
16 3000 0.015 0.80 0.80 0.95 0.05 0.15
17 1000 0.005 0.80 0.95 0.80 0.05 0.10
18 1000 0.010 0.80 0.65 0.80 0.10 0.15
19 2000 0.010 0.65 0.95 0.80 0.15 0.15
20 2000 0.015 0.95 0.80 0.80 0.05 0.15
21 3000 0.010 0.80 0.65 0.65 0.15 0.15
22 1000 0.015 0.80 0.80 0.80 0.05 0.05
23 3000 0.010 0.95 0.80 0.65 0.05 0.15
24 3000 0.015 0.80 0.65 0.80 0.05 0.05
25 1000 0.015 0.80 0.65 0.80 0.05 0.15
26 3000 0.005 0.65 0.95 0.95 0.15 0.05
27 3000 0.010 0.80 0.65 0.80 0.05 0.10
28 3000 0.005 0.65 0.65 0.95 0.10 0.15
29 2000 0.010 0.65 0.65 0.95 0.05 0.10
30 1000 0.005 0.80 0.65 0.80 0.05 0.15
31 2000 0.015 0.65 0.80 0.65 0.15 0.05
32 1000 0.010 0.80 0.95 0.65 0.15 0.15
33 1000 0.010 0.95 0.95 0.65 0.05 0.15
34 3000 0.005 0.65 0.80 0.80 0.15 0.10
35 3000 0.015 0.80 0.80 0.65 0.15 0.05
36 3000 0.010 0.65 0.95 0.95 0.15 0.15
37 3000 0.005 0.80 0.80 0.65 0.15 0.05
38 2000 0.005 0.95 0.95 0.65 0.10 0.15
39 1000 0.015 0.80 0.65 0.65 0.05 0.10
40 1000 0.005 0.95 0.65 0.95 0.05 0.05
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Table 3.7: Performance Comparison of RGA and 2SGA using 40 benchmark problems
from Hurink et al. (1994)

Benchmark Problem (vdata) RGA 2SGA

Prob.
size

N ×M Lower
Bound
LP

Upper
Bound
UP

Best
Obj.

Ave.
Obj.

GOHR AOG% Best
Obj.

Ave.
Obj.

GOHR AOG%
2SGA’s

Win Count

la01 10× 5 570 570* 571 576.70 0 1.18 570* 572.25 1 0.48 38
la02 10× 5 529 529* 530 535.35 0 1.02 529* 532.33 3 0.63 26
la03 10× 5 477 477* 479 484.90 0 1.66 477* 481.38 1 0.92 30
la04 10× 5 502 502* 504 509.58 0 1.51 502* 505.50 1 0.70 28
la05 10× 5 457 457 462 467.68 0 2.34 458 462.68 0 1.24 36
la06 15× 5 799 799* 800 803.80 0 0.60 799* 800.70 13 0.21 35
la07 15× 5 749 749* 750 755.65 0 0.89 749* 750.98 7 0.26 37
la08 15× 5 765 765* 766 767.90 0 0.38 765* 766.45 11 0.19 27
la09 15× 5 853 853* 855 858.08 0 0.59 853* 854.48 11 0.18 39
la10 15× 5 804 804* 805 807.58 0 0.44 804* 805.55 8 0.19 32
la11 20× 5 1071 1071* 1071* 1074.48 1 0.32 1071* 1071.95 22 0.09 36
la12 20× 5 936 936* 936* 938.53 2 0.27 936* 936.75 22 0.08 31
la13 20× 5 1038 1038* 1039 1041.35 0 0.32 1038* 1038.80 23 0.08 36
la14 20× 5 1070 1070* 1071 1072.83 0 0.26 1070* 1071.00 20 0.09 33
la15 20× 5 1089 1089* 1090 1092.33 0 0.31 1089* 1090.13 12 0.01 36
la16 10× 10 717 717* 717* 717.69 38 0.09 717* 717.00 40 0.00 2
la17 10× 10 646 646* 646* 646 40 0.00 646* 646.00 40 0.00 0
la18 10× 10 663 663* 663* 663 40 0.00 663* 663.00 40 0.00 0
la19 10× 10 617 617* 617* 644.03 2 4.38 617* 619.55 28 0.41 36
la20 10× 10 756 756* 756* 756 40 0.00 756* 756.00 40 0.00 0
la21 15× 10 800 806 813 856.48 NA 7.02 803† 825.58 NA 3.20 37
la22 15× 10 733 739 748 781.08 NA 6.56 736† 751.10 NA 3.29 38
la23 15× 10 809 815 824 858.90 NA 6.17 813† 834.00 NA 3.09 38
la24 15× 10 773 777 787 822.85 NA 6.45 775† 796.45 NA 3.03 37
la25 15× 10 751 756 765 804.48 NA 7.12 753† 777.55 NA 3.54 38
la26 20× 10 1052 1054 1056 1077.03 NA 2.38 1053† 1064.55 NA 1.19 33
la27 20× 10 1084 1085 1087 1106.05 NA 2.03 1085† 1099.13 NA 1.40 30
la28 20× 10 1069 1070 1074 1092.68 NA 2.21 1070 1083.60 NA 1.37 34
la29 20× 10 993 994 996 1019.20 NA 2.64 995 1007.03 NA 1.14 31
la30 20× 10 1068 1069 1073 1095.03 NA 2.53 1070 1083.15 NA 1.42 34
la31 30× 10 1520 1520* 1522 1528.25 0 0.54 1520* 1525.98 2 0.39 25
la32 30× 10 1657 1658 1659 1665.93 NA 0.54 1659 1665.78 NA 0.53 25
la33 30× 10 1497 1497* 1499 1505.20 0 0.55 1498 1504.28 0 0.49 25
la34 30× 10 1535 1535* 1536 1542.55 0 0.49 1535* 1540.80 1 0.38 23
la35 30× 10 1549 1549* 1551 1556.33 0 0.47 1550 1555.85 0 0.44 24
la36 15× 15 948 948* 948* 990.80 2 4.51 948* 948.8 35 0.08 38
la37 15× 15 986 986* 988 1045.4 0 6.02 986* 992.65 21 0.67 40
la38 15× 15 943 943* 943* 957.50 16 1.54 943* 943.00 40 0.00 24
la39 15× 15 922 922* 931 978.98 0 6.18 922* 927.58 22 0.60 40
la40 15× 15 955 955* 955* 972.13 15 1.79 955* 955.00 40 0.00 25

Total or Average 196 2.11 504 0.80 1177

* Global Optimal solution; †Lower than know upper bound; NA - Global Hit Rate not applicable since global optimal
solution is not known.
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Algorithm (EA) by Chiang and Lin (2013), Hybrid Harmony Search (HHS) by Yuan

et al. (2013), Hybrid Harmony and Large Neighborhood Search (HS) by Yuan and Xu

(2013), Heuristic by Ziaee (2014), Two-Stage Artificial Bee Colony (TABC) by Gao et al.

(2015), Hybrid GA and Tabu Search (HGTS) by Palacios et al. (2015), Multi-objective

Memetic Algorithms (MA2) by Yuan and Xu (2015) and Hybrid GA and Tabu Search

(HA) by Li and Gao (2016).

To have a better comparison, table 3.9 shows the minimum and maximum of

all those 21 reported makespans, along with our regular GA and 2SGA results and

conversion CPU time. This shows both regular GA and 2SGA perform in the range of

other studies. Columns 10 and 11 show the deviation of 2SGA makespan from the min

and max values of other approaches, defined as:

dev = [(2SGA-max or min)/2SGA] * 100

As can be seen, for every problem, the Two-Stage Genetic Algorithm outperformed

several approaches. Also, Two-Stage Genetic Algorithm has much better performance

in terms of both conversion time and final result than regular GA.

3.4.4. Performance Comparison by Solving Large Size Prob-

lems

In the previous section, we demonstrated the superiority of 2SGA over RGA using bench-

mark problems. However, such a comparison is inadequate as the problem instances are

small in size and do not represent the complexity of actual industrial problems. Method-

ologies that fare very well in small problem instances may not replicate their performance

when problem sizes increase. Moreover, in industrial settings, algorithms that arrive at

reasonable solutions very rapidly may be preferred over those which achieve the same or

better solutions at the expense of excessive computational time and cost. In this section,

using large-size problems, we illustrate that a Two-Stage Genetic Algorithm not only

converges very quickly but also it arrives at a better solution than RGA. The problems

considered have 50 to 140 jobs and 20 to 80 machines (see Problems 4 to 8 in Table

3.10). We run the algorithms 40 times for each problem using the 40 GA parameter
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sets given in Table 3.6. Figures 3.11-a and -b show the convergence of RGA and 2SGA,

respectively, while solving Problem 5. The average convergence is presented in Figures

3.11-c. The qualities (makespans) of the final solutions are given in Figure 3.11-d. As

can be seen from these convergence histories, 2SGA arrives at better solutions in all the

test runs than RGA. Similar results were obtained while solving Problem 6 (see Figures

3.11-e, -f, -g, and -h) and in all the other large-size problems. Figure 3.12 provides a

summary of the final solution qualities for Problems 2 to 8. As it can be seen in Fig-

ure 3.12-a, the difference in the average makespan from the 40 test runs increases with

problem size, and an average improvement as high as 18% is achieved in using 2SGA.

Furthermore, the standard deviation of the makespan of the final solutions is lower in

the case of 2SGA as shown in Figure 3.12-b, suggesting that 2SGA is more robust to

the GA parameter settings than RGA.

In addition to achieving improved solution qualities and robustness to parameter

settings, another yet very significant advantage of 2SGA over RGA is its fast conver-

gence. To illustrate this advantage, in Table 3.11, we provide the time snapshots of the

convergence histories of both algorithms while solving Problems 7 and 8. In Problem 7,

the makespan that was achieved in just less than 5 minutes by 2SGA was not reached

after more than 4 hours of computation by RGA. This advantage is further amplified

in Problem 8. The solution that was obtained by 2SGA at time t = 0, because of its

improved initial solution (see Section 3.4.2), was already better than the solution ob-

tained by RGA after more than 9 hours of computation. The solution that was obtained

in less than 30 minutes using 2SGA was not achieved after 72 hours of computation

using RGA. This result clearly demonstrates the superiority of 2SGA over RGA and its

potential in solving large-size industrial problems using short computational time.

3.4.5. Impact of Dividing the Search into Stages

In developing the Two-Stage Genetic Algorithm, we hypothesize that the greedy nature

of the first stage of the algorithm will enable it to find good solutions with minimal

computation. The second stage, following the RGA approach, will improve the solution
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Figure 3.11: Convergence behaviours of RGA and 2SGA in solving Problems 5 and 6 (Similar
convergence behaviours were observed in solving all the other large problems).
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Figure 3.12: Difference in average makespan, percentage improvement and standard deviation of the
final solutions from 40 test runs of RGA and 2SGA in solving Problem 2 to 8.

of the first stage by searching neighborhood solutions that might have been excluded

because of the greedy nature of the first stage. The impact of this phenomenon was ob-

served in many test runs we conducted. For example, the convergence graphs in Figures

3.11-b, -c, -f and -g, where a change of stage occurs at generation 3000, clearly shows

that solution improvement were possible by allowing the algorithm to run into its sec-

ond stage after the first stage converges. Figure 3.13 further illustrates this phenomenon

when Two-Stage Genetic Algorithm was executed in three different modes while solving

Problem 5. We differentiate these three modes by running the algorithm with (i) Stage-1

only, (ii) Stage-2 only, and (iii) Stage-1 followed by Stage-2. As can be seen in this fig-

ure (a, b, and c), the algorithm achieved further improvement in solution quality when

Stage-2 followed Stage-1. Figure 3.13-d shows that the two-stage approach improved the

final solution qualities in all the 40 test runs in Problem 5. Similar results were observed

in all the large-size problems considered in this study.

3.4.6. Comparison with Parallel RGA and Further Performance

Improvement

One of the very promising performance improvement strategies for a genetic algorithm

is parallel computation. To this end, many researchers reported successful implemen-

tations of parallel genetic algorithms in different domains. Defersha and Chen (2010b)

developed a Parallel RGA (P-RGA) to solve the same problem considered in this article.
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Figure 3.13: Illustration of the impact of dividing the search into two stages on the convergence
behaviour of the proposed algorithm in solving Problem 5.

In this section, we present a comparison between P-RGA and the Sequential Two-Stage

Genetic Algorithm (S-2SGA) and demonstrate the performance improvement of the lat-

ter using parallelization. For the parallel implementation of the GAs, we adopt the

island model with dynamically and randomly connected topology, initially proposed in

Defersha and Chen (2008). We used a total of 48 concurrently available processors

(CPUs) in the parallel implementations. Figure 3.14 shows the convergence behavior of

RGA and 2SGA both in sequential and parallel implantations while solving Problem 5.

A total of ten test runs were conducted using the first ten sets of the GA parameters

given in Table 3.6 while keeping the population size at 1000 in each CPU. Additional

parameters pertinent to parallelization, such as topology density, migration frequency,

and migration replacement policy, were set based on the recommendation in Defersha

and Chen (2010b). From the convergence graphs and the final solution quality plots, it

is clear to see that parallelization improves the performances of the algorithms. How-

ever, the more interesting result in this analysis is that S-2SGA (with only one CPU)
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outperforms the P-RGA (with 48 CPUs) both in terms of convergence speed and final

solution quality.
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Figure 3.14: Comparison of Parallel RGA with Sequential 2SGA and further improvement of 2SGA
using parallel computing.

3.5. Discussions and Conclusion

Regular genetic algorithms for FJSP attempt to determine both the assignment and

the sequencing of the operations simultaneously and randomly through out the entire

search process. In this research, we develop a Two-Stage Genetic Algorithm with the

first stage being different from the regular approach. The first stage has a solution

encoding that only dictates the sequence in which the operations are considered for

assignment. Whenever an operation is considered for assignment, the machine that can

complete this operation the soonest is selected while taking into account the operations

that are already assigned. The order in which the operations are assigned determines
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their sequence. The second stage, starting from the solutions of the first stage, follows

the regular approach to enable the algorithm to search the neighborhood solution by

including solutions that might have been excluded because of the greedy nature of the

first stage. The algorithm was tailored to solve a comprehensive FJSP problem, which

includes a sequence dependent setup time, attached or detached nature setups, machine

release date, and lag time. Extensive numerical studies were conducted to assess the

performance of the proposed algorithm. The findings of these numerical studies are

summarized below.

Initial solution quality: The solution encoding and the corresponding decoding

procedure proposed in this research enable the creation of high-quality initial solutions,

which are by far better than those created using a specialized initialization technique that

appeared in the literature. In the largest problem instance considered in this research,

up to 49.47% average makespan reduction in the initial population was observed in

using the proposed encoding/decoding procedure, whereas the specialized algorithm

from literature resulted only in a 3.76% reduction.

Evaluation using benchmark problems: A total of 40 benchmark problems

were solved using the proposed and regular genetic algorithms under 40 different pa-

rameter settings. In effect, each algorithm was executed for a total of 1600 test runs on

the benchmark problems. The proposed algorithm was able to reach a better solution

than the regular approach for 1177 times. Whereas the regular GA wins only 149 times,

and both algorithms achieve the same solutions 274 times. The result clearly shows the

superiority of the proposed algorithm in solving benchmark problems.

Evaluation using large-size problems: Methodologies that fare very well

in small problem instances may not replicate their performance when problem sizes

increase. In this study, using large-size problems having up to 140 jobs and 80 machines,

we showed that the proposed algorithm not only converges very quickly but also it arrives

at a better solution than the regular genetic algorithm. When solving the largest problem

in this research, we observed that a solution that was obtained in less than 30 minutes

using the proposed algorithm was not achieved after 72 hours of computation using the
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regular genetic algorithm.

Impact of dividing the search into stages: The greedy nature of the first

stage of the proposed algorithm enables it to find good solutions with minimal com-

putation. The second stage, following the approach of the regular genetic algorithm,

improves the solution of the first stage by searching neighborhood solutions that might

have been excluded because of the greedy nature of the first stage. The impact of this

phenomenon was observed in many test runs.

Comparison with parallel genetic algorithm: One of the very promising

performance improvement strategies for a genetic algorithm is parallel computation.

Numerical results showed that the performance of the proposed algorithm could be

further improved using parallelization. However, the more interesting finding in our

numerical study is that the sequential version of the proposed algorithm (with only one

CPU) outperforms the parallel version of the regular genetic algorithm (with 48 CPUs)

both in terms of convergence speed and final solution quality.

96



Chapter 3. Two-Stage GA for FJSP

T
ab

le
3.

8:
R

ep
or

te
d

so
lu

ti
on

s
fo

r
b

en
ch

m
ar

k
p
ro

b
le

m
s

b
y

B
ra

n
d
im

ar
te

(1
99

3)

P
ro

b
le

m
N

M
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

R
eg

G
A

2
S

G
A

M
K

01
10

6
40

40
41

40
40

40
40

40
4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
2

4
0

4
0

4
0

4
0

4
2

4
1

M
K

02
10

6
26

29
28

26
32

26
26

26
2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
6

2
8

2
6

2
6

2
6

2
6

2
7

2
7

M
K

03
15

8
20

4
N

/A
20

4
20

4
N

/A
20

4
20

4
20

4
2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

2
0
4

M
K

04
15

8
60

67
67

60
67

60
60

60
6
0

6
2

6
0

6
0

6
0

6
1

6
0

6
0

7
5

6
0

6
0

6
0

6
0

6
8

6
3

M
K

05
15

4
17

3
17

6
17

7
17

3
18

8
17

2
17

3
17

3
1
7
3

1
7
2

1
7
3

1
7
3

1
7
2

1
7
3

1
7
2

1
7
2

1
7
9

1
7
3

1
7
2

1
7
2

1
7
2

1
7
5

1
7
3

M
K

06
10

15
58

67
61

63
85

58
63

59
6
0

6
5

5
8

6
0

6
0

6
5

5
9

5
8

6
9

6
0

5
7

5
9

5
7

7
1

6
4

M
K

07
20

5
14

4
14

7
15

4
13

9
15

4
13

9
14

0
14

0
1
4
1

1
4
0

1
3
9

1
4
0

1
3
9

1
4
0

1
3
9

1
3
9

1
4
9

1
3
9

1
3
9

1
3
9

1
3
9

1
4
4

1
4
1

M
K

08
20

10
52

3
52

3
52

3
52

3
52

3
52

3
52

3
52

3
5
2
3

5
2
3

5
2
3

5
2
3

5
2
3

5
2
3

5
2
3

5
2
3

5
5
5

5
2
3

5
2
3

5
2
3

5
2
3

5
5
9

5
2
3

M
K

09
20

10
30

7
32

0
32

1
31

1
N

/A
30

7
31

2
30

7
3
0
7

3
1
0

3
0
7

3
0
7

3
0
7

3
1
1

3
0
7

3
0
7

3
4
2

3
0
7

3
0
7

3
0
7

3
0
7

3
3
6

3
1
1

M
K

10
20

15
19

8
22

9
21

9
21

2
N

/A
19

7
21

4
20

7
2
0
8

2
1
4

1
9
7

2
0
5

2
0
8

2
2
5

2
0
2

2
0
5

2
4
2

2
0
2

1
9
8

2
0
2

1
9
7

2
4
0

2
0
5

N
ot

e
C

ol
u

m
n

(m
et

h
o
d
)

la
b

el
s:

1
=

T
ab

u
S

ea
rc

h
(T

S
);

2
=

L
ea

rn
ab

le
G

en
et

ic
A

rc
h

it
ec

tu
re

(L
E

G
A

);
3

=
H

ie
ra

rc
h

ic
a
l

O
p

ti
m

iz
a
ti

o
n

(H
O

);
4

=
G

en
et

ic
A

lg
o
ri

th
m

(G
A

);
5

=
M

u
lt

i-
A

ge
n
t

T
ab

u
S

ea
rc

h
S

y
st

em
s(

M
A

S
);

6
=

H
y
b

ri
d

G
en

et
ic

a
n

d
V

a
ri

a
b

le
N

ei
g
h
b

o
rh

o
o
d

D
es

ce
n
t

A
lg

o
ri

th
m

(H
G

V
N

A
);

7
=

A
rt

ifi
ci

a
l
Im

m
u

n
e

A
lg

o
ri

th
m

(A
IA

);
8

=
V

ar
ia

b
le

N
ei

gh
b

ou
rh

o
o
d

S
ea

rc
h

(V
N

S
);

9
=

P
a
ra

ll
el

V
a
ri

a
b

le
N

ei
g
h
b

o
rh

o
o
d

S
ea

rc
h

(P
V

N
S

);
1
0

=
H

y
b

ri
d

T
a
b

u
S

ea
rc

h
(H

T
S

);
1
1

=
D

is
cr

ep
an

cy
S

ea
rc

h
(D

S
);

12
=

H
y
b

ri
d

C
h

ao
s

P
ar

ti
cl

e
S

w
a
rm

O
p

ti
m

iz
a
ti

o
n

a
n

d
G

A
(H

A
T

);
1
3

=
A

rt
ifi

ci
a
l

B
ee

C
o
lo

n
y

(A
B

C
);

1
4

=
E

vo
lu

ti
o
n

a
ry

A
lg

or
it

h
m

(E
A

);
15

=
H

y
b

ri
d

H
ar

m
on

y
S

ea
rc

h
(H

H
S

);
1
6

=
H

y
b

ri
d

H
a
rm

o
n
y

a
n

d
L

a
rg

e
N

ei
g
h
b

o
rh

o
o
d

S
ea

rc
h

(H
S

);
1
7

=
H

eu
ri

st
ic

;
1
8

=
T

w
o
-

S
ta

ge
A

rt
ifi

ci
al

B
ee

C
ol

on
y

(T
A

B
C

);
19

=
H

y
b

ri
d

G
A

a
n

d
T

a
b

u
S

ea
rc

h
(H

G
T

S
);

2
0

=
M

u
lt

i-
o
b

je
ct

iv
e

M
em

et
ic

A
lg

o
ri

th
m

s
(M

A
2
);

2
1

=
H

y
b

ri
d

G
A

an
d

T
ab

u
S

ea
rc

h
;

97



Chapter 3. Two-Stage GA for FJSP

Table 3.9: Comparison between proposed 2SGA with regular GA and minimum and
maximum of other methods

Problem N M Min Max Reg GA GA t. 2SGA 2SGA t.
Dev.

from Min
Dev.

from Max

MK01 10 6 40 42 42 00:02 41 00:02 2.44% -2.44%
MK02 10 6 26 32 27 00:44 27 00:01 3.7% -18.52%
MK03 15 8 204 204 204 00:15 204 00:01 0% 0%
MK04 15 8 60 75 68 02:30 63 00:50 4.76% -19.05%
MK05 15 4 172 188 175 02:06 173 00:08 0.58% -8.67%
MK06 10 15 57 85 71 06:34 64 00:12 10.94% -32.81%
MK07 20 5 139 154 144 03:00 141 00:04 1.42% -9.22%
MK08 20 10 523 555 523 04:46 523 00:06 0% -6.12%
MK09 20 10 307 342 336 15:01 311 02:19 1.29% -9.97%
MK10 20 15 197 242 240 13:03 205 05:53 3.9% -18.05%

Table 3.10: General characteristics of comprehensive problems

Number of
operations per job

Number of
alternative machines

per operation
Problem No. of Jobs No. of Machins Min Max Min Max

1 5 4 2 4 2 4
2 20 10 7 9 5 8
3 20 20 8 10 5 10
4 50 20 10 15 5 10
5 70 30 12 20 7 12
6 100 30 15 20 7 12
7 100 50 15 30 7 15
8 140 80 20 40 4 15
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Table 3.11: Comparison of 2SGA and RGA in solving very large problems

Problem 7 (100x50) Problem 8 (140x80)
2SGA RGA 2SGA RGA

Time Makespan Time Makespan Time Makespan Time Makespan
00:00:00 14557 00:00:00 29921 00:00:00 17383 00:00:00 36731
00:02:20 13882 00:04:20 28778 00:07:14 17003 01:23:50 36731
00:04:45 13576 00:10:03 22261 00:14:48 16578 01:28:56 36483
00:10:16 13113 00:12:22 20506 00:26:14 16048 01:44:13 34844
00:15:19 12858 00:15:09 18501 00:28:07 15955 02:33:06 29581
00:20:15 12698 00:20:14 16618 01:01:45 15195 04:02:31 23779
00:30:15 12556 00:25:02 15370 01:28:31 14879 05:01:32 21376
00:37:01 12537 00:32:42 14577 02:01:46 14581 09:07:17 17396
00:36:37 12555 00:45:08 14328 02:30:21 14455 11:14:49 17025
03:18:20 12535 01:00:04 14171 03:00:58 14381 20:07:39 16571
03:42:01 12532 01:30:11 14012 04:03:50 14304 67:33:23 16049
04:31:24 12528 02:00:31 13938 06:00:18 14233 71:57:29 16009

* * 02:15:24 13902 12:00:56 14229 * *
* * 03:33:39 13895 10:19:20 14229 * *
* * 03:51:51 13882 30:58:00 14228 * *
* * 04:04:29 13830 33:04:34 14225 * *
* * 04:41:06 13757 37:24:18 14225 * *

* The termination criterion was meet.
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Chapter 4

Multi-Objective Lot Streaming

Extension

4.1. Introduction

Chapter 3 presented an efficient Two-Stage Genetic Algorithm that we developed ini-

tially for a classic FJSP (published in Rooyani and Defersha (2019)) and then applied

it on a comprehensive FJSP that incorporates (1) sequence dependent setup time, (2)

attached and detached nature of setup, (3) machine release date, and (4) lag time (pub-

lished in Defersha and Rooyani (2020)). As it was described, the high performance of the

two-stage algorithm was achieved by a systematically designed solution representation

and a greedy decoding mechanism of the first stage. This approach enables the algorithm

to find highly improved solutions from the get-go that rapidly converge to promising re-

gions of the search space. The second stage removes the greedy nature of the first stage

and follows the regular approach of a genetic algorithm for FJSP and attempts to im-

prove the solutions found in the first stage. The superiority of the Two-Stage Genetic

Algorithm specifically in solving very large-size problems was demonstrated by solving

the examples of up to 80 machines and 140 jobs. In this chapter, we extend the ap-

plication of the algorithm of chapter 3 to solve a lot streaming problem in FJSP that

appeared in Defersha and Chen (2012a) while at the same time expanding the problem
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to incorporate multiple objective functions. The objective function terms included are

the minimization of (1) makespan, (2) maximum sublot flowtime, (3) total sublot flow-

time, (4) maximum job flowtime, (5) total job flowtime, (6) maximum sublot finish-time

separation, (7) total sublot finish-time separation, (8) maximum machine load, (9) total

machine load, and (10) maximum machine load difference. The result of this research is

published in Rooyani and Defersha (2022).

In addition to expanding the single objective lot streaming FJSP to a multi-

objective one and customizing the Two-Stage Genetic Algorithm to solve it, an added

contribution of this research is its provision of many numerical studies. At the outset of

the numerical studies, all ten objective function terms are illustrated using a small pro-

totype problem. The importance of multi-objective optimization in small versus large

size problems is examined and contrasted. The capability of the Two-Stage Genetic

Algorithm to jointly optimize all the objective function terms is evaluated. The need to

optimize both the maximum and the total of a performance measure (such as flowtime)

was examined. The relevance of two newly proposed objective function terms (sublot

finish-time separation and maximum workload difference) in providing better solution

quality is assessed. The quality of the initial population and the convergence behavior

of the Two-Stage Genetic Algorithm is contrasted against the regular genetic algorithm

with respect to each of the objective function terms. Further algorithm enhancement

through high-performance parallel computation is considered. Algorithm components

and parameters are empirically studied. In particular, three different selection opera-

tors are examined, and the Analysis of Variance (ANOVA) on mutation and crossover

probabilities is conducted.

The remainder of this chapter is organized as follows. The proposed multi-objective

FJSP lot streaming model is presented in Section 4.2. The adaptation of the Two-Stage

Genetic Algorithm to solve the multi-objective lot streaming model is detailed in Section

4.3. Section 4.4 provides extensive numerical studies. Conclusion, discussion and future

research are in Section 4.5.
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4.2. Mathematical Modeling

4.2.1. The Basic Problem

The main objective of this work is to expand the single objective FJSP lot streaming

model presented in Defersha and Chen (2012a) to a multi-objective one and develop

a Two-Stage Genetic Algorithm based on the work in Defersha and Rooyani (2020).

However, for a better comprehension, we first present the basic single-objective problem

and its mathematical model as presented in Defersha and Chen (2012a).

Problem description and notations

Consider a job shop consisting of M machines where machines with common function-

alities are grouped into a department (e.g., turning machines in a turning department).

Assume that the system is currently processing jobs from the previous schedule, and

each machine m (where m = 1, . . . , M) has a release date Dm at which time it will

be available for the next scheduling. Consider also a total of J independent jobs to be

scheduled next in the system where a job is a batch of identical parts. The number of

parts in a batch of job j (where j = 1, . . . , J) is given by Bj, and this batch is to be

split into Sj number of unequal sublots (transfer batches). A decision variable bs,j is

used to denote the size of sublot s (where s = 1, . . . , Sj) of job j. Each sublot of job

j is to undergo Oj number of operations in a fixed sequence such that each operation o

(where o = 1, . . . , Oj) can be processed by one of several eligible machines. To,j,m is

unit-processing-time for operation o of job j on machine m. Operation o of a sublot of

job j can be started on an eligible machine m after lag time Lo,j and after the setup is

performed. The lag time Lo,j is a waiting time that may be required either for cooling,

drying, or for some other purpose. The setup time for an operation o of job type j

on machine m depends on the preceding operations and is denoted by So,j,m,o′,j′ , where

operation o′ of a sublot of job j′ is the preceding operation on machine m. If operation

o of sublot s of job j is the first operation to be processed on machine m, the setup
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time is represented as S∗o,j,m. The setup time So,j,m,o′,j′ (or S∗o,j,m) for operation o of a

sublot of job j can be overlapped with the processing time of operation o − 1 of the

same sublot if the setup is a detached setup and machine m is available for setup. The

problem is to determine the size of each sublot, assign the operation of each sublot to one

of the eligible machines and determine the sequence and starting time of the assigned

operations on each machine. The objective is to minimize the makespan of the schedule.

We next introduce some additional notations and then present a mixed-integer linear

programming (MILP) formulation for Flexible Assembly Job-shop Scheduling Problem

with Lot Streaming (FJSP-LS).

Additional Parameters:

Rm Maximum number of production runs of machine m where production runs

are indexed by r or u = 1, 2, ...., Rm; Each of these production runs can be

assigned to at most one operation of one sublot. Thus the assignment of the

operations to production runs of a given machine determines the sequence of

the operations on that machine;

Po,j,m A binary data equal to 1 if operation o of job j can be processed on machine

m, 0 otherwise;

Ao,j A binary data equal to 1 if the setup of operation o of of job j is attached

(non-anticipatory), or 0 if this setup is detached (anticipatory);

Ω Large positive number.

Variables:

Continuous Variables:

cmax Makespan of the schedule

co,s,j Completion time of operation o of sublot s of job j;
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ĉr,m Completion time of the rth run of machine m;

bs,j Size of sublot s of job j

Binary Integer Variables:

xr,m,o,s,j A binary variable which takes the value 1 if the rth run on machine m is for

operation o of sublot s of job j, 0 otherwise;

yr,m,o,j A binary variable which takes the value 1 if the rth run on machine m is for

operation o of any one of the sublots of job j, 0 otherwise;

γs,j A binary variable that takes the value 1 if sublot s of job j is non-zero (bs,j ≥

1), 0 otherwise,

zr,m A binary variable that takes the value 1 if the rth potential run of machine

m has been assigned to an operation, 0 otherwise;

MILP model for FJSP-LS

Following the problem description and using the notations given above, the MILP math-

ematical model for the FJSP-LS is presented below.

Minimize:

(4.1)Objective = cmax

Subject to:

(4.2)cmax ≥ co,s,j ; ∀(o, s, j)

(4.3)ĉr,m ≥ co,s,j + Ω · xr,m,o,s,j − Ω ; ∀(r,m, o, s, j)

(4.4)ĉr,m ≤ co,s,j − Ω · xr,m,o,s,j + Ω ; ∀(r,m, o, s, j)

(4.5)ĉ1,m − bs,j · To,j,m − S∗o,j,m − Ω · x1,m,o,s,j + Ω ≥ Dm ; ∀(m, o, s, j)

(4.6)ĉr,m − bs,j · To,j,m − So,j,m,o′,j′−Ω · (yr−1,m,o′,j′ + xr,m,o,s,j) + 2Ω ≥ ĉr−1,m ;

∀(r,m, o, s, j, o′, j′)|(r > 1)
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(4.7)ĉ1,m − bs,j · To,j,m − S∗o,j,m · Ao,j−Ω · (x1,m,o,s,j + xr′,m′,o−1,s,j) + 2Ω ≥ ĉr′,m′ + Lo,j;

∀(m, r′,m′, o, s, j)|{((1,m) 6= (r′,m′)) ∧ (o > 1)}

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ · Ao,j − Ω · (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j) + 3Ω

≥ ĉr′,m′ + Lo,j ;∀(r,m, r′,m′, o, s, j, o′, j′)|{(r > 1) ∧ (o > 1)

∧(r,m) 6= (r′,m′) ∧ (o, j) 6= (o′, j′)}
(4.8)

(4.9)yr,m,o,j ≤ Po,j,m ; ∀(r,m, o, j)

(4.10)yr,m,o,j =

Sj∑
s=1

xr,m,o,s,j ; ∀(r,m, o, j)

(4.11)
M∑

m =1

Rm∑
r =1

xr,m,o,s,j = γs,j ; ∀(o, s, j)

(4.12)bs,j ≤ Bj · γs,j ; ∀(s, j)

(4.13)γs,j ≤ bs,j ; ∀(s, j)

(4.14)

Sj∑
s =1

bs,j = Bj ; ∀(j)

(4.15)
J∑

j =1

Sj∑
s =1

Oj∑
o =1

xr,m,o,s,j = zr,m ; ∀(r,m)

(4.16)zr+1,m ≤ zr,m ; ∀(r,m)

(4.17)xr′,m,o′,s,j ≤ 1− xr,m,o,s,j; ∀(r, r′,m, o, o′, s, j)|{(o′ > o) ∧ (r′ < r)}

(4.18)xr′,m,o′,s,j ≤ 1− xr,m,o,s,j; ∀(r, r′,m, o, o′, s, j)|{(o′ < o) ∧ (r′ > r)}

(4.19)xr,m,o,s,j, yr,m,o,j, γs,j and zr,m are binary

The complete description and the meanings of the objective function in Eq. (4.1)

and the constraints in Eqs. (4.2)-(4.19) can be found in Defersha and Chen (2012a).The

expansion of this single objective FJSP lot streaming model into a multi-objective one

is presented in the following section.
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4.2.2. Multi-Objective Model for FJSP-LS

As it was stated previously, one of the objective of this work is to expand the single

objective FJSP lot streaming presented in Defersha and Chen (2012a) to a multi objec-

tive approach. In this section, we present notations of additional continuous variables

and the MILP formulation of the proposed multi-objective FJSP scheduling with lot

streaming.

Additional Continuous Variables

The definitions of the additional continuous variables is given below. Further explana-

tions for some of the variable definitions are also given as we discus the equations that

uses those variables.

es,j Entry time of sublot s of job j;

êj Entry time of job j (minimum of es,j for all s of job j);

ds,j Departure time of sublot s of job j;

d̂j Departure time of job j (maximum of ds,j for all s of job j);

fs,j Flowtime of sublot s of job j;

f̂j Flowtime of job j;

fmax Maximum sublot flowtime;

f̂max Maximum job flowtime;

ftotal Total sublot flowtime;

f̂total Total job flowtime;

ĝj Minimum sublot departure time of job j;

ĥj Sublot finish separation time of job j;
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ĥmax Maximum sublot finish separation time;

ĥtotal Total sublot finish separation time;

lm,o,s,j Workload on machine m because of the setup and processing of operation o

of sublot s of job j;

l̂m Workload on machine m;

l̂min Minimum machine workload;

l̂max Maximum machine workload;

l̂total Total machine workload;

l̂diff Maximum machine workload difference;

Objective Functions and Additional Constraints

The objective of the proposed multi-objective model is to minimize the function given

in Eq. (4.20) subject to the constraints in the original model in Eqs. (4.2) to (4.19) and

newly added constraints in Eqs. (4.21) to (4.56). The objective function terms and the

additional constraints are discussed in the following sections.

(4.20)Minimize: Zi ∀i ∈ {1, 2, · · · , 10}.

Makespan (Z1)

Makespan is defined as the maximum completion time of a given schedule. Its min-

imization is a widely used objective function in scheduling research. The essence of

minimizing makespan is to finish production as soon as possible to expedite delivery of

products to customers and/or to quickly free up resources for the upcoming production

and other tasks such as development and maintenance. The first objective function (Z1)

of the proposed multi-objective model is makespan (cmax) as shown in Eq. (4.21).

(4.21)Z1 = cmax
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Maximum and Total Sublot Flowtime (Z2 and Z3)

The entry time (es,j) to the shop floor of a sublot of a job is the time the setup of its first

operation begins if the setup is attached. If the setup of the first operation is detached,

es,j is the time at which the actual processing of the first operation begins as setup can

be completed before the raw material is admitted to the shop floor. The constraints in

Eqs. (4.22) to (4.25) are used to set the value of this variable. The departure time of the

sublot (ds,j) is simply the completion time of the last operation of the sublot as enforced

by the constraint in Eq. (4.26). The flowtime of sublot s of job j, denoted as fs,j, is the

interval between the time the sublot enters the shop floor to the time its last operation

is finished. Its value is set by the constraint in Eq. (4.27). The constraint in Eq. (4.28)

along with the objective function will enforce fmax to assume the maximum flowtime

of all the sublots (max∀(s,j) fs,j). The total flowtime of all the sublots is calculated by

the constraint in Eq. (4.29). The objective function terms Z2 and Z3 are the values of

fmax and ftotal as shown in Eqs. (4.30) and (4.31), respectively. The minimization of

flowtime can lead to stable or uniform utilization of resources and a rapid turn-around

of jobs, and it is particularly important in real-life situations where reducing inventory

or holding cost is of primary concern (Sang and Duan, 2012).

(4.22)es,j ≥ c1,s,j − bs,j · T1,j,m − S∗1,j,m · A1,j − Ω · (1− x1,m,1,s,j); ∀(s, j,m)

(4.23)es,j ≤ c1,s,j − bs,j · T1,j,m − S∗1,j,m · A1,j + Ω · (1− x1,m,1,s,j); ∀(s, j,m)

(4.24)es,j ≥ c1,s,j − bs,j · T1,j,m

− S1,j,m,o′,j′ · A1,j−2Ω · (1− xr,m,1,s,j − yr−1,m,o′,j′); ∀(s, j, r,m)|r > 1

(4.25)es,j ≤ c1,s,j − bs,j · T1,j,m

− S1,j,m,o′,j′ · A1,j+2Ω · (1− xr,m,1,s,j − yr−1,m,o′,j′); ∀(s, j, r,m)|r > 1

(4.26)ds,j = cOj ,s,j; ∀(s, j)

(4.27)fs,j = ds,j − es,j; ∀(s, j)
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(4.28)fmax ≥ fs,j; ∀(s, j)

(4.29)ftotal =
J∑
j=1

Sj∑
s=1

fs,j

(4.30)Z2 = fmax

(4.31)Z3 = ftotal

Maximum and Total Job Flowtime (Z4 and Z5)

In the presence of lot streaming, the entrance time êj and the departure time d̂j of a job

are the smallest and the largest entrance times of all its sublots, min∀s|γs,j=0{es,j} and

max∀s|γs,j=0{ds,j}, respectively. The values of these variables are set by the constraints

in Eqs. (4.32) and (4.33), and the objective function. The flowtime of a job, f̂j, is the

difference d̂j − êj as enforced by the constraint in Eq. (4.34). The constraint in Eq.

(4.35) along the objective function enforce f̂max to assume the maximum flowtime of

all the jobs, max∀j{f̂j}. The total job flowtime (f̂total) is evaluated by the constraint in

Eq.(4.36). The values f̂max and f̂total correspond to the fourth and fifth terms, Z4 and

Z5, of the objective function and their values are enforced by the constraints in Eqs.

(4.37) and (4.38), respectively.

(4.32)êj ≤ es,j + Ω(1− γs,j); ∀(s, j)

(4.33)d̂j ≥ ds,j − Ω(1− γs,j); ∀(s, j)

(4.34)f̂j = d̂j − êj; ∀j

(4.35)f̂max ≥ f̂j; ∀j

(4.36)f̂total =
J∑
j=1

f̂j

(4.37)Z4 = f̂max

(4.38)Z5 = f̂total
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Maximum and Total Sublot finish-time Separation (Z6 and Z7)

In lot streaming, sublots are treated independently. As a result, one sublot of a job

may be finished much sooner than the other sublot of the same job. This may increase

work-in-process inventory as the entire job can not be made available for shipment or

assembly within a reasonable time window. Hence, in this research, we introduce an

objective function to minimize the gap between the earliest and the latest finish-times

of sublots of the same job. In doing so, first we defined a variable ĝj that assumes

the earliest finish-time among all the sublots of a job, min∀(s,j)|γs,j=1{ds,j}, as enforced

by the constraint in Eq. (4.39) and the objective function. The latest finish-time of

the sublots of a job is its departure time d̂j that was discussed previously. With these

variables defined, the sublot finish separation time of a job, ĥj, is the difference d̂j − ĝj,

enforced by the constraint in Eq. (4.40). The constraint in Eq. (4.41) and the objective

function will enforce ĥmax to assume the value max∀j{ĥj}. The total sublot finish time

separation ĥtotal is evaluated using the constraint in Eq. (4.42). The objective function

terms Z6 and Z7 correspond to the values of ĥmax and ĥtotal, respectively, as enforced by

the constraints in Eqs. (4.43) and (4.44).

(4.39)ĝj ≤ ds,j + Ω(1− γs,j); ∀(s, j)

(4.40)ĥj = d̂j − ĝj; ∀(j)

(4.41)ĥmax ≥ ĥj; ∀(j)

(4.42)ĥtotal =
J∑
j=1

ĥj

(4.43)Z6 = ĥmax

(4.44)Z7 = ĥtotal
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Maximum Workload, Total Workload and Maximum Workload-Difference

(Z8, Z9 and Z10)

In addition to makespan and flowtime, two other objectives commonly considered in

FJSP scheduling are the minimization of maximum and total machine workload. They

represent the intention of protecting machines from overuse (Chiang and Lin, 2013).

Moreover, in this research, we noted that in the presence of alternative routing and

sequence dependent setup time, these objectives could result in a substantially reduced

overall system workload with a moderate increase in makespan. This can significantly

free up machine operators for other activities such as quality improvement, development,

and maintenance. The necessary variables and constraints to impose these categories of

objective functions are discussed below.

The workload on machine m (i.e., lm,o,s,j) because of an assigned operation o of

sublot s of job j comprises the setup and the actual processing of the operation. The

value of this variable is assigned by the constraints in Eqs. (4.45) to (4.48). The overall

workload on machine m, (l̂m), comprises the workloads because of all the operations

assigned to it from the current schedule and its release date Dm as shown in Eq. (4.49).

The release date may represent the amount of work that spills into the current planning

and scheduling period from the previous one. The objective function along with the

constraints in Eqs. (4.50) and (4.51) set the values of l̂max = max∀m{lm} and l̂min =

min∀m{lm}, respectively. The workload difference between the maximally and the least

loaded machines (maximum workload difference, l̂diff ) is calculated using the constraint

in Eq. (4.52). The total workload on the system l̂total is evaluated by the constraint

in Eq. (4.53). The objective function terms Z8, Z9, and Z10 represent the values of

l̂max, l̂total, and l̂diff as enforced by the constraints in Eqs. (4.54), (4.55) and (4.56),

respectively.

(4.45)lm,o,s,j ≥ S∗o,j,m + bs,j · To,j,m − Ω · (1− x1,m,o,s,j); ∀(m, o, s, j)

(4.46)lm,o,s,j ≤ S∗o,j,m + bs,j · To,j,m + Ω · (1− x1,m,o,s,j); ∀(m, o, s, j)

(4.47)lm,o,s,j ≥ So,j,m,o′,j′ + bs,j · To,j,m−2Ω · (1− xr,m,o,s,j − yr−1,m,o′,j′);

∀(r,m, o, s, j)|r > 1
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(4.48)lm,o,s,j ≤ So,j,m,o′,j′ + bs,j · To,j,m+2Ω · (1− xr,m,o,s,j − yr−1,m,o′,j′);

∀(r,m, o, s, j)|r > 1

(4.49)l̂m = Dm +
J∑
j=1

Sj∑
s=1

Oj∑
o=1

lm,o,s,j; ∀(m)

(4.50)l̂max ≥ lm; ∀(m)

(4.51)l̂min ≤ lm; ∀(m)

(4.52)l̂diff = lmax − lmin; ∀(m)

(4.53)l̂total =
M∑
m=1

lm;

(4.54)Z8 = l̂max

(4.55)Z9 = l̂total

(4.56)Z10 = l̂diff

4.3. Genetic Algorithm

4.3.1. Prototype Problem

To illustrate the solution representation and the various genetic operators, a prototype

problem that consists of the processing of four jobs using five machines is considered.

The complete data sets for this small problem are given in Tables 4.1 and 4.2. Data

related to batch size (Bj), nature of setup being attached or detached (Ao,j), lag time

(Lo,j) and alternative routing (m,To,j,m) for each operation are in Table 4.1. Sequence-

dependent setup time data is provided in Table 4.2. This problem is also used in the

numerical example to illustrate the various objective function terms of the proposed

model.
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Table 4.1: Data for Jobs for Problem-1

(Eligible machine, Processing Time) = (m, To,j,m)

j Bj Sj o Ao,j Lo,j i ii iii iv

1 100 2 1 0 0 (1, 6.75) (4, 6.50) (5, 6.50)
2 1 120 (1, 3.00) (2, 2.25) (4, 2.75)
3 0 120 (1, 3.50) (2, 3.25) (4, 3.75) (5, 3.50)

2 250 3 1 0 0 (1, 1.75) (2, 2.00) (5, 1.25)
2 1 0 (2, 5.00) (3, 4.25) (4, 5.00) (5, 4.75)
3 1 40 (1, 7.00) (2, 7.00) (3, 6.50) (5, 6.50)
4 0 40 (1, 2.50) (2, 2.50) (3, 2.75) (4, 2.75)

3 200 3 1 0 0 (1, 5.25) (5, 5.75)
2 1 0 (1, 4.50) (3, 4.25) (5, 4.25)
3 1 0 (1, 3.50) (2, 3.50)

4 100 2 1 0 0 (4, 6.00) (5, 6.00)
2 0 0 (1, 4.25) (3, 4.75) (4, 4.75) (5, 4.75)
3 1 0 (2, 2.00) (4, 1.25) (5, 1.25)

Machine release dates in minutes: D1 = 840, D2 = D3 = D5 = 0, D4 = 120.

4.3.2. Solution Encoding

A solution encoding is a technique of transforming a problem statement into a searchable

space of all feasible solutions, in which an algorithm can be applied to explore iteratively

for optimal solutions. Hence, its design is the first most crucial step in solving a problem

using a search-based algorithm. The solution encoding used in this work combines

features from the solution representations in Defersha and Chen (2012a) for FJSP lot

streaming and that in Defersha and Rooyani (2020) for dividing the genetic search into

two stages. This solution encoding is depicted in Figure 4.1 for a typical solution of the

prototype problem presented in the previous section. As shown in Figure 4.1-(a), the

solution representation has two segments. The first segment (Segment-1), detailed in

Figure 4.1-(b), encodes the numbers and sizes of sublots for all the jobs. The number

of genes in this segment is equal to the sum of the maximum number of sublots of each

job (
∑J

j=1 Sj), where there are Sj genes corresponding to each job. The gene αj,s takes
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a continuous value from the interval [0, 1]. The decoding procedure for the number and

sizes of the sublots from Segment-1 is detailed in Section 4.3.3.

The second segment (Segment-2) of the solution encoding has two forms. The first

form, detailed in Figure 4.1-(c), is applicable for the first stage of the search by the

genetic algorithm. The number of genes in this segment is equal to the total number

of operations in all the sublots, which can be computed as
∑J

j=1

∑Oj

o=1 Sj × Oj. Each

gene is a 3-tuple [j, s, o] composed of job, sublot and operation indices. For a particular

[j, s], there are Oj number of genes corresponding to each operation of the sublot, and

a gene [j, s, o] appears in the segment earlier than [j, s, o′] if o < o′. This segment

provides the order (left to right) in which the operations are considered for assignment

and sequencing. Whenever an operation of a sublot of a given job is to be assigned to a

machine, the algorithm chooses the machine that completes the operation sooner after

completing the operations previously assigned to this machine. In that case, the order

in which the operations are assigned to machines represents their processing sequence.

The second form of Segment-2, detailed in Figure 4.1-(d), is for the second stage

of the genetic search. This form of the segment explicitly encodes both the assignment

and sequencing of the operations on the machines. Each gene, in this form, is 4-tuple

[j, s, o,m] where m encodes the machine assignment for operation [j, s, o] and it is re-

stricted to take the value such that Pj,o,m = 1. Moreover, for a given [j, s], the gene

[j, s, o,m] appeared earlier the sequence than [j, s, o′,m′] if o < o′. The sequence of the

operation on a given machine m is dictated by the order in which the genes appeared on

Segment-2. For instance, the assignment and the sequence of the operation on machine

m = 4 is (j1, s2, o1) → (j2, s1, o2) → (j4, s1, o2) → (j1, s1, o2) → (j2, s1, o4). The

detail discussion of the decoding of Segment-2 under the first and the second stage of

the genetic search is given in Section 4.3.3.
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(c) Details for Segment-2 in Stage-1, where a gene takes a value [j, s, o].
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(d) Details for Segment-2 in Stage-2, where a gene takes a value [j, s, o, m].

Figure 4.1: Solution representation

4.3.3. Solution Decoding

Number and Size of Sublots

The decoding of the number and sizes of sublots from Segment-1 is similar to that

discussed in Defersha and Chen (2012a). Given the values of the genes in Segment-

1, the size of a sublot bs,j can be computed using Eq. (4.57). Once all the bs,j’s are

calculated, a sublot whose size is less than a minimum threshold value is set to zero, and

the corresponding gene αs,j is also set to zero. And then, the sizes of the other sublots

are reevaluated using the same equation (Eq. (4.57)). In this decoding, the number of

the sublots for a given job is equal to the number of sublots whose sizes are greater than

zero.

115



Chapter 4. Multi-Objective Lot Streaming Extension

(4.57)bs,j =


αs,j∑Sj
s=1 αs,j

if
∑Sj

s=1 αs,j > 0

Bj/Sj Otherwise

Assignment, Sequencing and Completion Time

Once the sizes of all the sublots are known (see Section 4.3.3), the assignment, sequenc-

ing, and completion times of the operation of each non-zero sublot and other variables

are determined using the information obtained from Segment-2 and two decoding pro-

cedures outlined in this section. The first decoding procedure is applicable for Stage-1

of the genetic search, while the second is for Stage-2.

Stage-1

In Stage-1 of the genetic search, the assignment and sequencing of the operations and

the determination of their starting and finish times are obtained using a procedure that

utilizes the information in the first form of Segment-2 of the solution representation

(Figure 4.1-(c)). In describing this procedure, let us first define GeneS2F1[l] to denote

the content of a gene [j, s, o] in the first form of Segment-2 at location l, where l runs

from 1 to the total number of genes in this segment. Moreover, let us define rm as a run

counter for machine m, which increases by one every time an operation is assigned to

the machine. With this definition, the steps for the determination of the assignment and

sequencing of operations in Stage-1 of the search are outlined in Figure 4.2 along with

the procedure described in Figure 4.4 to evaluate the decision variables co,s,j,m, lm,o,s,j,

es,j, and ds,j. In Step-1, the counters l and rm are initialized to 1 and 0, respectively.

The values of the indices j, s, and o are obtained from GeneS2F1[l] at Step-2. In

Step-3, if bs,j is zero, the algorithm move to Step-9. Otherwise, it advances to Step-4.

In these steps, the counter rm is temporarily increased by 1 corresponding to all the

eligible machines for operation o of job j. And then, using the procedure outlined in

Figure 4.4, the variables co,s,j,m, lm,o,s,j, es,j, and ds,j are evaluated corresponding to all
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these eligible machines. In Step-5, the machine that finishes operation [o, s, j] with the

smallest co,s,j,m is selected, and in Step-6, the operation is assigned to the rthm run of this

machine. In Step-7, the values of the decision variable calculated corresponding to the

selected machine are retained as final values. The values of the counter rm, that was

temporarily increased in Step-4, are reduced by 1 corresponding to those machines that

are not selected to process operation [o, s, j]. In Step-9, the algorithm stops if all the

operations are assigned, or otherwise, it increases the counter l by one and then returns

to Step-2.

Step 1. Set l = 1. Set rm = 0;∀m.

Step 2. Set (j, s, o) = GeneS2F1[l] of the chromosome in Figure 4.1-(c).

Step 3. If bs,j > 0, go to Step 4; Otherwise, go to Step 9.

Step 4. Temporarily set rm = rm + 1 for each eligible machine m of operation o
of job j (for each m such that po,j,m = 1). Using the procedure described
in Figure 4.4, calculate the completion time of operation o of sublot s of
job j corresponding to each of the eligible machines m.

Step 5. Using the results from Step 4, select the machine that can complete the
operation sooner.
Say this machine is machine m∗.

Step 6. Assign operation o of sublot s of job j to the (rm∗)
th run of machine m∗.

Step 7. Retain the values of co,s,j,m, lm,o,s,j, es,j, and ds,j calculated Step 4 corre-
sponding to machine m = m∗ as the final values of these variables.

Step 8. Set rm = rm − 1 corresponding to all the other machines considered in
Step 4 but not selected to processes operation o of job j in Step 5.

Step 9. If l is equal to the total number of operations, Stop; Otherwise set l = l+1
and go to Step 2.

Figure 4.2: A decoding procedure for the solution representation given in Figure 4.1-(c) for the first
stage of the Two-Stage Genetic Algorithm.
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Stage-2

In Stage-2 of the genetic search, the second form of Segment-2 of the solution representa-

tion (Figure 4.1-(d)) is used. This form of the segment explicitly encodes the assignment

and sequencing of the operations as it was discussed in Section 4.3.2. Unlike the decod-

ing procedure previously discussed for Stage-1, the decoding in Stage-2 does not follow

a greedy approach in selecting a machine for an operation assignment as the assignment

and sequencing are directly inferred from the solution representation. The decoding

procedure is only for the determination of several continuous variables along with the

start and finish times of the operations of all the sublots having non-zero sizes. This

decoding procedure is outlined in Figure 4.3. In this decoding procedure, the natation

GeneS2F2[l] denotes the content of the gene [j, s, o,m] at location l of the second form

of Segment-2. The notations l and rm have the same meaning as they were used in the

previous discussion.

Step 1. Set l = 1. Set rm = 0;∀m.

Step 2. Set (j, s, o,m) = GeneS2F2[l] of the chromosome in Figure 4.1-(d).

Step 3. If bs,j > 0, go to Step 4; Otherwise, go to Step 7.

Step 4. Set rm = rm + 1.

Step 5. Assign operation o of sublot s of job j to the (rm)th run of machine m.

Step 6. Calculate the values of co,s,j,m, lm,o,s,j, es,j, and ds,j using the procedure
described in Figure 4.4.

Step 7. If l is equal to the total number of operations, Stop; Otherwise set l = l+1
and go to Step 2

Figure 4.3: A decoding procedure for the solution representation given in Figure 4.1-(d) for the second
stage of the Two-Stage Genetic Algorithm

Calculating Objective Function Terms

In the decoding procedures presented in the previous section, the values of co,s,j, es,j,

ds,j, and lm,o,s,j were determined. Once the values of these variables are known for each
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If operation o of sublot s sublot of job j is to be processed on rthm run of machine m, the values of

the variables co,s,j , es,j , ds,j , êj , d̂j and lm,o,s,j are calculated based on one of the following four cases:

• Case 1: [o = 1; rm = 1]
(a) Operation o of sublot s of job j is the first operation to be assigned on machine m (i.e.,

rm = 1), and

(b) o = 1.

co,s,j = Dm + S∗o,j,m + bs,j × To,j,m
lm,o,s,j = S∗o,j,m + bs,j × To,j,m
es,j = co,s,j,m − bs,j × To,j,m −Ao,j × S∗o,j,m

• Case 2: [o > 1; rm = 1]

(a) Operation o of sublot s of job j is the first operation to be assigned on machine m (i.e.,
rm = 1),

(b) o > 1, and

(c) Operation o− 1 of sublot s of job j was assigned on machine m′.

co,s,j = max{Dm + (1−Ao,j)× S∗o,j,m , co−1,s,j,m′ + Lo,j}+ bs,j × To,j,m +Ao,j × S∗o,j,m
lm,o,s,j = S∗o,j,m + bs,j × To,j,m
If o = Oj , then ds,j = co,s,j,m

• Case 3: [o = 1; rm > 1]

(a) Operation o of sublot s of job j is not the first operation to be assigned on machine m
(i.e., rm > 1),

(b) Operation o′ of sublot s′ of job j′ is the operation to be processed immediately before
operation o of sublot s of job j on machine m (i.e., Operation o′ of sublot s′ of job j′

was assigned to run rm − 1 of machine m), and

(c) o = 1.

co,s,j = co′,s′,j′,m + So,j,m,o′,j′ + bs,j × To,j,m
lm,o,s,j = So,j,m,o′,j′ + bs,j × To,j,m
es,j = co,s,j,m − bs,j × To,j,m −Ao,j × So,j,m,o′,j′

• Case 4: [o > 1; rm > 1]

(a) Operation o of sublot s of job j is not the first operation to be assigned on machine m
(i.e., rm > 1),

(b) Operation o′ of sublot s′ of job j′ is assigned immediately before operation o of sublot
s of job j on machine m (i.e., Operation o′ of sublot s′ of job j′ was assigned to run
rm − 1 of machine m),

(c) o > 1, and

(d) Operation o− 1 of sublot s of job j is assigned on machine m′.

co,s,j = max{co′,s′,j′,m + (1−Ao,j)×So,j,m,o′,j′ , co−1,s,j,m′ +Lo,j}+ bs,j × To,j,m +Ao,j ×
So,j,m,o′,j′

lm,o,s,j = So,j,m,o′,j′ + bs,j × To,j,m
If o = Oj , then ds,j = co,s,j,m.

Figure 4.4: Calculation of the decision variables co,s,j , es,j , ds,j , and lm,o,s,j
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sublot having size greater than zero (bs,j > 0), the various terms of the objective function

can easily be calculated as shown in Table 4.3.

4.3.4. Handling Multi-Objectives

In the literature, there are many techniques in handling multi-objective optimization

using evolutionary algorithms. However, because of its simplicity and computational

efficiency, we choose a weighted sum approach in which multiple objectives are aggre-

gated into a single objective using a weight vector. In the best scenario, the weight

vector is assigned by decision-makers having knowledge about the relative importance

of the objective functions. However, because of large differences in magnitudes of the

objective functions, scaling the objectives is always desirable to obtain solutions con-

sistent with the decision-makers preferences. Hence, in the aggregated objective, the

kth objective function has to be multiplied by the weights Wk, reflecting the decision

makers’ preference, and Ψk for scaling as shown in Eq. (4.58). In this research, we

adopt a simple objective function scaling mechanism in such a way that, in the initial

population of the genetic algorithm, the magnitude of the maximum values of objective

function terms Z2 through Z10 will have the same values as the maximum value of Z1.

This scaling procedure can be mathematically described as shown in Eq. (4.59) where

ZIni−max
k represents the maximum value of objective Zk in the initial population. The

decision-maker is free to choose any positive value of Wk. The problem may be solved

multiple times with different sets of Wk’s, and the resulting solutions can be presented

to decision-makers for final decision. Nevertheless, scheduling is a day-to-day activ-

ity where the decision-makers may already have a preferred set of Wk’s from previous

experience.

(4.58)Z =
10∑
k=1

Wk ·Ψk · Zk

(4.59)Ψk =
ZIni−max

1

ZIni−max
k
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4.3.5. Genetic Operators

A genetic algorithm works on a population of solutions. The initial population is gen-

erated randomly, and the algorithm works iteratively to evolve this population towards

promising solutions following the principles of natural evolution. The mechanisms used

to achieve this artificial evolutionary process are collectively called genetic operators.

These operators are broadly classified into selection, crossover, and mutation. The op-

erators used in the proposed genetic algorithm are discussed below.

Selection Operators

The role of selection operator in a genetic algorithm is to mimic the principle of the

survival of the fittest in natural evolution. This operator creates a mating pool of indi-

viduals for reproduction. Selection can be applied in a variety of ways. In this research,

we considered the three most commonly used approaches in literature, namely (1) pro-

portional, (2) linear ranking, and (3) tournament selections. The following notations are

used to describe these selection operators.

N Number of individuals (solutions) in a population.

U(t) Population of solution at generation t;

U(i, t) The ith individual in the population at generation t;

M(t) Mating pool created via selection operator from the population U(t) (the size

of the mating pool is the same as that of the population);

M(i, t) The ith individual in the mating pool at generation t;

Z(i, t) The weighted objective function value corresponding to the ith individual in

the population at generation t;

Zmin(t) The minimum observed weighted objective function value in the population

at generation t;
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Zmax(t) The maximum observed weighted objective function value in the population

at generation t;

F (i, t) The fitness value of the ith individual in the population at generation t;

R(i, t) The rank of the ith individual in the population at generation t for linear

ranking selection;

P (i, t) Probability of selection of ith individual in the population at generation t for

proportional or linear ranking selection method;

T Tournament size for tournament selection.

Algorithm 1: Monte Carlo Simulation of Roulette Wheel Spinning for pro-
portional or ranked selection

Input : P (i, t) for i = 1, 2, ..., N
Output: Winner

1 Set Sum = 0
2 Set ρ = rand()

/* Assign ρ a random number between 0 and 1 using random
number generator function rand() */

3 for i = 1 to N do
4 Sum = Sum+ P (i, t)
5 if ρ ≤ Sum then
6 Winner = i
7 Break

/* Break the “for loop” and go to line 10 */

8 end

9 end
10 Return Winner

Proportional Selection

Proportional selection is a procedure in which individuals from a given generation are

selected (with replacement) to move to the mating pool with a probability proportional

to their fitness F that needs to be maximized. In a problem where the objective function

Z is to be minimized, a fitness function F has to be devised so that a solution with
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Algorithm 2: Monte Carlo Simulation of Tornament selection

Input : Z(i, t) for i = 1, 2, ..., N
Output: Winner

1 for j = 1 to T do
2 Competitor[j] = RandIntBetween(1, N)

/* Select T competitors randomly */

3 end
4 Winner = Competitor[1]

/* Assign Winner the index of the first competitor */
5 for j = 2 to T do
6 w = Winner
7 i = Competitor[j]
8 if Z(i, t) < Z(w, t) then
9 Winner = i

10 end

11 end
12 Return Winner

Algorithm 3: Creating the mating pool M(t)

Input : U(t)
Output: M(t)

1 for i = 1 to N do
2 j = Selection()

/* The function Selection() returns the index of the individual
selected from U(t). This function is implemented either using
Algorithm-1 if roulette wheel selection is used or Algorithm-2 if
tournament selection is used */

3 M(i, t) = U(j, t)

4 end
5 Return Winner

smaller Z will have higher fitness than a solution with larger Z. In such situations, a

commonly used fineness function is the reciprocal of Z as shown in Eq. (4.60). We also

considered other two transformations shown in Eqs. (4.61) and (4.62). Once the fitness

values for all the individuals in the population are calculated, each individual is assigned

a probability of selection defined by the equation in Eq. (4.63). As it can be seen from

this equation, P (i, t) is proportional to the fitness F (i, t) and the sum
∑N

i P (i, t) is
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equal to 1. This probability distribution can be sampled using Monte-Carlo simulation

of a Roulette wheel, where each solution is assigned a slot proportional to its probability

of selection (P (i, t)). Algorithm 1 depicts the Monte-Carlo simulation of a Roulette

wheel, and every time this algorithm is called, it returns an integer number (winner)

representing the index of the selected individual. The procedure of constituting the

mating pool M(t) from a given population U(t) is depicted in Algorithm 3.

(4.60)F (i, t) =
1

Z(i, t)

(4.61)F (i, t) = Zmax(t) + Zmin(t)− Z(i, t)

(4.62)F (i, t) = Zmax,t − Z(i, t)

(4.63)P (i, t) =
F (i, t)∑N
i F (i, t)

Linear Ranking Selection

In a linear ranking selection, the individuals in the population are assigned ranks based

on a sorted sequence of their objective function values. The individuals with the worst

objective function are assigned a rank of 1, and the next worse individuals are assigned a

rank of 2, and so on. In this process, the best individuals are assigned the highest possible

rank. Once each individual is a assigned a rank R(i,t), a selection probability P (i, t)

can be calculated using Eq. (4.64). This probability function can be sampled using

Monte-Carlo simulation of a Roulette wheel ( Algorithm 1) to constitute the mating

pool using Algorithm 3.

(4.64)P (i, t) =
R(i, t)∑N
i R(i, t)

Tournament Selection

Tournament selection is the most commonly used selection operator in literature. In

this selection procedure, every time a selection is performed, T individuals are randomly
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selected (with replacement) from the population, and the one with the smallest Z is

selected as a winner. The process is repeated for N number of times to form a mating

pool of N individuals from a given generation of population. The integer parameter T

is referred to as tournament size, and it is usually equal to a small fraction of N where

the smallest possible value is 2. A large value of T results in higher selection pressure

and premature convergence, whereas a small value of T may result in slow convergence.

The Monte-Carlo simulation of tournament selection is given in Algorithm 2, which can

be used along Algorithm 3 to constitute the mating pool.

Crossover Operators

Crossover operators are responsible for creating offspring from parent chromosomes via

the exchange of genetic materials, mimicking sexual reproduction in living organisms.

Once M(t) is formed using the selection operator, each individual is paired randomly to

create a total of N/2 pairs. Then, a crossover operator is applied on each pair resulting

from the creation of offsprings. The crossover operators used in this work are listed

below. SSC1, SSC2, JLOSC, SLOSC and MAC are direct adaptations from Defersha

and Chen (2012a). However, in this work, JLOSC, SLOSC, and MAC are applicable only

in the second stage of the search. JLGSC and SLGSC share similarities with JLOSC

and SLOSC, but they are applicable only in the first stage of the genetic search.

(a) Sublot-Size Crossover-1 (SSC1)

(b) Sublot-Size Crossover-2 (SSC2)

(c) Job Level Gene Sequence Crossover (JLGSC)

(d) Sublot Level Gene Sequence Crossover (SLGSC)

(e) Job Level Operation Sequence Crossover (JLOSC)

(f) Sublot Level Operation Sequence Crossover (SLOSC)

(g) Machine Assignment Crossover (MAC)
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a1,1 1,2a 2,1a 2,2a 2,3a 3,1a

3,2a 3,3a 4,1a 4,2a
Job-1 Job-2 Job-3 Job-4

Job-1 Job-2 Job-3 Job-4

3,1a1,1 a1,2 a2,1 a2,2 2,3a a

3,2a a3,3 a4,1 a

Parent 1

4,2

Exchange

Parent 2

Crossover Point

(a) SSC-1

a1,1 1,2a a 2,2a

2,3a 3,1a 3,2a 3,3a 4,1a 4,2a

Job-1 Job-2 Job-3 Job-4

Job-1 Job-2 Job-3 Job-4

3,1

a1,1 a1,2 a2,1 a2,2

2,3a a 3,2a a3,3 a4,1 a

Parent 1

4,2

Exchange

Parent 2

Crossover Point

(b) SSC-2.

Figure 4.5: Illustration of the crossover operators SSC-1 and SSC-2

Figure 4.5 depicts the first two crossover operators (SSC1 and SSC2). When SSC1

(or SSC2) is applied, an arbitrary crossover point is selected on Segment-1, and the

parts of this segment that lie to the left (or right) of the crossover point are exchanged.

The step-by-step application of JLGSC is illustrated in Figure 4.6 where the creation

of Child-1 is detailed. In Step-1, one gene is selected arbitrarily. This gene and all the

other genes with the same job index, j, are copied from Parent-1 to Child-1. In Step-3,

all the missing genes of Child-1 are copied from parent-2 in the order they appeared in

this second parent. At the same time, Child-2 is also created by first copying genes from

Parent-2 with the same job index as the arbitrarily selected gene. The missing genes

of Child-2 will be obtained from Parent-1. SLGSC is applied in a similar manner as
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JLGSC. However, the gene transfer in SLGSC is limited to the gens that have the same

job and sublot index (j, s) as the arbitrarily selected gene in Step-1.

JLOSC is applied in four steps as shown in Figure 4.7. In Step-1, a crossover point

(a gene) is selected arbitrarily. All the genes with the same job index as the arbitrarily

selected gene are copied from Parent-1 to Child-1 in Step-2. In Step-3, the first three

elements (j, s, o) of the missing genes of Child-1 are copied from Parent-2. In the last

step, the machine assignments of the incomplete genes that were copied from Parent-

2 are completed by the machine assignment obtained from Parent-1. The creation of

Child-2 will be performed in a similar manner by starting from Parent-2. SLOSC is a

reduced version of JLOSC where the first step is limited to the genes having the same

job and sublot indices. Hence, if Figure 4.7 were for SLOSC, only the genes with job

index j = 3 and sublot index s = 2 will be copied to Child-1 in Step-2. When either

JLOSC or SLOSC is applied, Child-1 (Child-2) will have the same machine assigned as

Parent-1 (Parent-2), but with a different operation sequence. Thus, JLOSC and SLOSC

manipulate only the sequence of operations without altering machine assignments in

stage-2 of the generic search.

The machine assignment crossover (MAC), shown in Figure 4.8, is responsible for

exchanging machine assignment information between parent chromosomes during stage-

2 of the genetic search. As it can be seen in the figure, this operator is applied in three

steps to create offspring. In Step-1, several genes are arbitrarily selected (each one with

50% chance). In Step-2, the contents of Parent-1 are copied to Child-1 without the

machine assignment information of the arbitrarily chosen genes. In the last step, the

missing machine assignment information is copied from Parent-2. Child-2 is created in a

similar manner by starting Step-1 from Parent-2 for the same locations of the arbitrarily

selected genes in creating Child-1 (i.e., locations 6, 10, 14, 18, 20, 23, 25, 27, and 31).

Here it is essential to mention that, though there are many crossover operators, whenever

crossover is to happen between a pair of parent chromosomes, only one crossover operator

will be arbitrarily selected and applied with a probability (pcros) to create two offsprings.

If the selected crossover operator is not applied (by chance), the parent chromosomes
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will move to the next generation (with or without mutation operators applied, again by

chance).
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Figure 4.6: Illustration of JLGSC crossover operator

Mutation Operators

Mutation operators are applied with a small probability on a newly generated offspring

to alter its genetic material. This category of operators used in this work are listed below.

They are adapted from Defersha and Chen (2012a) while the need to divide the genetic

search into two stages is taken into consideration. The first two mutation operators,

SGVM and SGSM, are applicable both in Stage-1 and -2 of the GA search. Whereas

OGSM is applicable only in Stage-1, and OSSM, ROAM, and IOAM are applicable

only in Stage-2. Each one of the six mutation operators listed below is applied with a

probability pmut on a newly generated offspring as long as it is eligible for the stage of

the search of the GA.

(a) Sublot Gene Value Mutation (SGVM)

(b) Sublot Gene Swap Mutation (SGSM)
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Figure 4.7: Illustration of JLOSC crossover operator
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Figure 4.8: Illustration of MAC crossover operator
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(c) Operation Gene Shift Mutation (OGSM)

(d) Operations Sequence Shift Mutation (OSSM)

(e) Random Operation Assignment Mutation (ROAM)

(f) Intelligent Operations Assignment Mutation (IOAM)

SGVM is used to alter the value of a gene αj,s in Segment-1 of a newly born

offspring chromosome. When this operator is applied, a single gene is arbitrarily selected,

and its value is either increased or decreased (50% by chance) with a small quantity

according to Eq. (4.65) or Eq. (4.66), respectively. In these two equations, rand() is

a function that returns a random number in the interval [0, 1], and δ is the maximum

increment or decrement quantity which can be regarded as the GA’s parameter that

needs to be set. In this research, we found that the value δ between 0.1 and 0.2 is

preferable. The second mutation operator, SGSM, arbitrarily selects a job j in Segment-

1 and swap the values of two arbitrarily selected genes αj,s and αj,s′ corresponding to

sublots s and s′ (s 6= s′).

(4.65)αj,s = min{1, αj,s + rand()× δ}

(4.66)αj,s = max{1, αj,s − rand()× δ}

Operation gene shift mutation (OGSM) is applied on form-1 of Segment-2 of the

solution representation (Figure 4.1-c) during Stage-1 of the GA search. When this

operator is applied, it first arbitrarily selects a gene (j, s, o), and then relocates it to an

arbitrary location after and before the locations of the genes (j, s, o−1) and (j, s, o+ 1),

respectively. If o = 0, the selected gene (j, s, o) can be moved only forward to an

arbitral location before the location of gene (j, s, o + 1). Whereas, if o = Oj, the gene

can be moved only backward to a location after the location of the gene (j, s, o − 1).

OGSM impacts both machine assignment and operation sequencing as it alters the

sequence of the genes, which is used to determine operations assignment and sequencing

in Stage-1 of the GA search by the greedy procedure described in Section 4.3.3. OSSM
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is applied on form-2 of Segment-2 ((Figure 4.1-d)) to shift a location of an arbitrarily

selected gene (j, s, o,m) during Stage-2 of the search. It is applied in a similar manner as

OGSM was applied during Stage-1. However, in Stage-2, since the genes directly encode

machine assignment, OSSM impacts only operation sequencing but not the machine

assignment of the operations. ROAM is a mutation operator responsible for altering

machine assignment in Stage-2 of the GA search. The operator arbitrarily selects a gene

(j, s, o,m), and changes the value of m to a different eligible machine m′ for operation

o of job j (i.e., Po,j,m′ = 1). IOAM intelligently changes a machine assignment in an

attempt to lower the workload on a heavily loaded machine. This operator first identifies

the machine with the largest workload because of the solution under consideration for

a mutation (let that machine be donated as m∗). Then it selects one of the operations

assigned to m∗ and relocates it to an eligible machine with the least load as long as the

load transfer will not make the least loaded machine more loaded than m∗ after the load

transfer.

4.4. Numerical Studies

4.4.1. Model Analysis

Illustration of Objective Function Terms

This section attempts to illustrate the various objective function terms considered in this

work. For this purpose, the prototype problem presented in Section 4.3.1 was solved

using the proposed algorithm, where makespan minimization was the only objective

function, and other objective function terms were merely evaluated. The details of

a typical solution are given in Tables 4.4 to 4.8. Table 4.4 provides the sizes of the

created sublots and operation-to-machine assignments and the run orders along with the

Beginning and End times of Lag time, Setup, and Processing. The maximum Processing

End time, 2603.8, is the makespan of the schedule.
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The values of the objective function terms related to sublot flowtime can be ex-

tracted from Table 4.4. The entry time to the shop floor of a sublot (es,j) is the setup

begin (SB) time of the first operation if the setup is attached or it is equal to the setup

end (SE) time if the setup is detached. Here, it is important to note that if the setup

of the first operation is detached, the setup can begin and be completed before raw

material is dispatched to the shop floor. The sublot departure time (ds,j) is the process

end (PE) time of the last operation. From the first row of column ten of Table 4.4,

e1,1 = 100, because the job is dispatched after its setup is completed as the first opera-

tion of this sublot has a detached setup time. The departure time d1,1 = 2587.5. Hence,

the flowtime f1,1 = 2587.5 − 100 = 2487.5. The flowtimes for the other sublots can be

determined similarly and are summarized in Table 4.5. At the bottom of this table, the

performance measure fmax and ftotal are indicated as 2487.5 and 16560.6, respectively.

Job flowtime and sublot-finish-separation objective function terms can be eval-

uated from Table 4.5. The entry time ê1 and the departure time d̂1 of the first job

are the same as e1,1 and d1,1, respectively, of the first sublot since this job has only

one sublot in the final solution. Hence, its flowtime f̂1 = f1,1 = 2487.5. The sec-

ond job has three sublots in the final solution. Thus, its entry time ê2 is the mini-

mum of {e1,2, e2,2, e3,2} = e3,2 = 120.0, and its departure time d̂2 is the maximum

of {d1,2, d2,2, d3,2} = d3,2 = 2599.8. Therefore, the flowtime of job-2 is evaluated as

f̂2 = 2599.8 − 120.0 = 2479.5. For job-3, ê3 is the minimum of {e1,3, e2,3, e3,3} =

e1,3 = 920.0, and d̂3 is the maximum of {d1,3, d2,3, d3,3} = d2,3 = 2603.8. Therefore,

f̂3 = 2603.8− 920.0 = 1683.8. Similarly, for the forth job, ê4 = 220.0, d̂4 = 2583.6, and

f̂4 = 2363.6. The sublot finish separation time for job-1 is zero since this job has only

one sublot. Whereas, the sublot finish-time separation of job-2 is the difference between

(1) the maximum of {d1,2, d2,2, d3,2} = d3,2 = d̂2, and (2) minimum of {d1,2, d2,2, d3,2}

= d1,2 = ĝ2, which is evaluated as ĥ2 = d̂2 − ĝ2 = 2599.8 − 2257.4 = 342.4. The

sublot finish-time separations for the other jobs can be evaluated similarly. The result

is summarized in Table 4.6. In the last row of this table, the objective function com-

ponents f̂mas, f̂totoal, ĥmas and ĥtotoal are indicated as 2487.5, 9014.7, 1006.1 and 1787,
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respectively.

Table 4.7 provides the schedule for the prototype problem with respect to the

machines. From this table, the workload because of each operation assignment can be

evaluated by subtracting SB from PE. For instance, from the first row of this table, the

load because of operation-1 of sublot-1 of job-3 is lm,o,s,j = l1,1,1,3 = 1342.0 − 840.0 =

502. Similarly, the workload because of the other four operations on machine-1 can

be evaluated as 441.8, 381.4, 291.3, and 147.3, bringing the total workload on this

machine to 1763.8 + 840 = 2603.8, where 840 is the release date of the machine. The

utilization (workload/makespan) of this machine is 100% as its workload is the same as

the makespan. The workloads and the utilization of the other machines are also evaluated

in a similar way as summarized in Table 4.8. The objective function components l̂max,

l̂total and l̂max − l̂min are given in the last row of this table as 2603.8, 12488.4 and 427.7,

respectively. The values for all of the objective function components are summarized in

Table 4.9.
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Table 4.2: Sequence Dependent Setup Time Data for Problem-1

Setup Time S∗o,j,m and So,j,m,o′,j′

j o m (S∗o,j,m) · · ·(j′, o′, So,j,m,o′,j′ ) · · ·

1 1 1 (120) (1,1,20)(1,2,100)(1,3,120)(2,1,210)(2,3,210)(2,4,240)(3,1,240)(3,2,210)(3,3,240)(4,2,210)
4 (140) (1,1,15)(1,2,80)(1,3,120)(2,2,180)(2,4,240)(4,1,210)(4,2,210)(4,3,240)
5 (100) (1,1,20)(1,3,80)(2,1,210)(2,2,180)(2,3,240)(3,1,180)(3,2,240)(4,1,180)(4,2,180)(4,3,180)

2 1 (140) (1,1,100)(1,2,20)(1,3,80)(2,1,240)(2,3,210)(2,4,180)(3,1,240)(3,2,210)(3,3,240)(4,2,210)
2 (100) (1,2,15)(1,3,100)(2,1,180)(2,2,210)(2,3,180)(2,4,180)(3,3,180)(4,3,210)
4 (140) (1,1,80)(1,2,10)(1,3,80)(2,2,240)(2,4,180)(4,1,240)(4,2,210)(4,3,240)

3 1 (80) (1,1,80)(1,2,120)(1,3,10)(2,1,180)(2,3,240)(2,4,180)(3,1,240)(3,2,180)(3,3,210)(4,2,180)
2 (160) (1,2,120)(1,3,20)(2,1,180)(2,2,210)(2,3,180)(2,4,180)(3,3,210)(4,3,210)
4 (80) (1,1,100)(1,2,100)(1,3,15)(2,2,240)(2,4,240)(4,1,240)(4,2,240)(4,3,210)
5 (120) (1,1,100)(1,3,20)(2,1,180)(2,2,180)(2,3,210)(3,1,180)(3,2,210)(4,1,180)(4,2,210)(4,3,240)

2 1 1 (80) (1,1,240)(1,2,240)(1,3,240)(2,1,20)(2,3,120)(2,4,120)(3,1,210)(3,2,210)(3,3,180)(4,2,240)
2 (120) (1,2,180)(1,3,180)(2,1,10)(2,2,100)(2,3,120)(2,4,120)(3,3,180)(4,3,180)
5 (160) (1,1,240)(1,3,180)(2,1,15)(2,2,100)(2,3,100)(3,1,180)(3,2,210)(4,1,180)(4,2,180)(4,3,240)

2 2 (120) (1,2,180)(1,3,210)(2,1,80)(2,2,15)(2,3,120)(2,4,100)(3,3,240)(4,3,210)
3 (100) (2,2,20)(2,3,80)(2,4,120)(3,2,240)(4,2,210)
4 (120) (1,1,210)(1,2,180)(1,3,240)(2,2,10)(2,4,80)(4,1,180)(4,2,240)(4,3,240)
5 (120) (1,1,180)(1,3,240)(2,1,120)(2,2,20)(2,3,80)(3,1,210)(3,2,240)(4,1,240)(4,2,210)(4,3,240)

3 1 (80) (1,1,210)(1,2,240)(1,3,240)(2,1,80)(2,3,10)(2,4,80)(3,1,240)(3,2,240)(3,3,240)(4,2,210)
2 (100) (1,2,210)(1,3,180)(2,1,120)(2,2,80)(2,3,15)(2,4,80)(3,3,210)(4,3,180)
3 (140) (2,2,80)(2,3,10)(2,4,100)(3,2,240)(4,2,180)
5 (160) (1,1,240)(1,3,210)(2,1,80)(2,2,120)(2,3,10)(3,1,240)(3,2,180)(4,1,180)(4,2,240)(4,3,210)

4 1 (160) (1,1,180)(1,2,210)(1,3,210)(2,1,80)(2,3,100)(2,4,10)(3,1,240)(3,2,180)(3,3,180)(4,2,210)
2 (140) (1,2,180)(1,3,180)(2,1,120)(2,2,80)(2,3,120)(2,4,10)(3,3,180)(4,3,210)
3 (160) (2,2,100)(2,3,100)(2,4,10)(3,2,240)(4,2,210)
4 (120) (1,1,240)(1,2,240)(1,3,180)(2,2,120)(2,4,10)(4,1,210)(4,2,180)(4,3,210)

3 1 1 (80) (1,1,240)(1,2,240)(1,3,240)(2,1,180)(2,3,180)(2,4,210)(3,1,15)(3,2,120)(3,3,100)(4,2,180)
5 (80) (1,1,210)(1,3,240)(2,1,240)(2,2,180)(2,3,240)(3,1,15)(3,2,100)(4,1,210)(4,2,180)(4,3,210)

2 1 (120) (1,1,240)(1,2,240)(1,3,180)(2,1,240)(2,3,240)(2,4,240)(3,1,80)(3,2,20)(3,3,100)(4,2,210)
3 (140) (2,2,240)(2,3,240)(2,4,240)(3,2,15)(4,2,180)
5 (160) (1,1,180)(1,3,210)(2,1,240)(2,2,180)(2,3,180)(3,1,100)(3,2,10)(4,1,240)(4,2,240)(4,3,240)

3 1 (120) (1,1,180)(1,2,240)(1,3,240)(2,1,210)(2,3,180)(2,4,180)(3,1,120)(3,2,100)(3,3,10)(4,2,210)
2 (160) (1,2,240)(1,3,210)(2,1,210)(2,2,180)(2,3,240)(2,4,180)(3,3,15)(4,3,210)

4 1 4 (100) (1,1,210)(1,2,240)(1,3,210)(2,2,240)(2,4,180)(4,1,10)(4,2,100)(4,3,100)
5 (100) (1,1,180)(1,3,210)(2,1,180)(2,2,180)(2,3,210)(3,1,210)(3,2,210)(4,1,10)(4,2,120)(4,3,100)

2 1 (100) (1,1,240)(1,2,240)(1,3,210)(2,1,180)(2,3,180)(2,4,240)(3,1,180)(3,2,240)(3,3,240)(4,2,20)
3 (80) (2,2,240)(2,3,240)(2,4,240)(3,2,210)(4,2,20)
4 (140) (1,1,180)(1,2,210)(1,3,180)(2,2,240)(2,4,240)(4,1,100)(4,2,10)(4,3,100)
5 (80) (1,1,180)(1,3,180)(2,1,240)(2,2,210)(2,3,210)(3,1,240)(3,2,180)(4,1,80)(4,2,15)(4,3,80)

3 2 (100) (1,2,210)(1,3,210)(2,1,210)(2,2,210)(2,3,180)(2,4,210)(3,3,210)(4,3,20)
4 (140) (1,1,240)(1,2,210)(1,3,240)(2,2,180)(2,4,180)(4,1,120)(4,2,100)(4,3,15)
5 (140) (1,1,180)(1,3,240)(2,1,210)(2,2,180)(2,3,210)(3,1,240)(3,2,240)(4,1,100)(4,2,100)(4,3,10)
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Table 4.3: Calculating the objective function terms once the values of co,s,j, es,j, ds,j,
and lm,o,s,j are evaluated corresponding to each sublot with non-zero size.

Intermediate Calculation Obj. Function Term

cmax = max∀(o,s,j) co,s,j Z1 = cmax

fs,j = ds,j − es,j
fmax = max∀(s,j)|bs,j>0{fs,j} Z2 = fmax

ftotal =
∑
∀(s,j)|bs,j>0{fs,j} Z3 = ftotal

êj = min∀s|bs,j>0{es,j}
d̂j = max∀s|bs,j>0{ds,j}
f̂j = d̂j − êj
f̂max = max∀j{f̂j} Z4 = f̂max

f̂total =
∑
∀j{f̂j} Z5 = f̂total

ĝj = min∀s|bs,j>0{ds,j}
ĥj = d̂j − ĝj
ĥmax = max∀j{ĥj} Z6 = ĥmax

ĥtotal =
∑
∀j{ĥj} Z7 = ĥtotal

l̂m = Dm +
∑
∀(m,o,s,j)|bs,j>0{lm,o,s,j}

l̂max = max∀m{lm} Z8 = l̂max

l̂total =
∑
∀m{lm} Z9 = l̂total

l̂min = min∀m{lm}
l̂diff = lmax − lmin Z10 = l̂diff
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Table 4.4: Operation scheduling for Problem-1

j s bs,j o m r LB LE SB SE/PB PE

1 1 100.0 1 5 1 0.0 0.0 0.0 100.0 750.0
2 4 6 750.0 870.0 1577.5 1817.5 2092.5
3 4 7 2092.5 2212.5 2112.5 2212.5 2587.5

2 1 90.8 1 2 2 0.0 0.0 303.0 313.0 494.6
2 3 2 494.6 494.6 792.0 812.0 1197.8
3 3 3 1197.8 1237.8 1237.8 1317.8 1907.8
4 3 4 1907.8 1947.8 1907.8 2007.8 2257.4

2 67.7 1 2 3 0.0 0.0 494.6 504.6 640.0
2 2 4 640.0 640.0 640.0 720.0 1058.5
3 2 5 1058.5 1098.5 1098.5 1178.5 1652.5
4 2 7 1652.5 1692.5 2308.1 2428.1 2597.4

3 91.5 1 2 1 0.0 0.0 0.0 120.0 303.0
2 3 1 303.0 303.0 303.0 403.0 792.0
3 2 6 792.0 832.0 1652.5 1667.5 2308.1
4 3 5 2308.1 2348.1 2338.1 2348.1 2599.8

3 1 80.4 1 1 1 0.0 0.0 840.0 920.0 1342.0
2 1 2 1342.0 1342.0 1342.0 1422.0 1783.8
3 1 3 1783.8 1783.8 1783.8 1883.8 2165.2

2 39.2 1 5 2 0.0 0.0 750.0 960.0 1185.5
2 5 5 1185.5 1185.5 2104.4 2114.4 2281.1
3 1 5 2281.1 2281.1 2456.5 2466.5 2603.8

3 80.4 1 5 3 0.0 0.0 1185.5 1200.5 1662.8
2 5 4 1662.8 1662.8 1662.8 1762.8 2104.4
3 1 4 2104.4 2104.4 2165.2 2175.2 2456.5

4 1 50.0 1 4 2 0.0 0.0 520.0 530.0 830.0
2 4 3 830.0 830.0 830.0 930.0 1167.5
3 5 6 1167.5 1167.5 2281.1 2521.1 2583.6

2 50.0 1 4 1 0.0 0.0 120.0 220.0 520.0
2 4 4 520.0 520.0 1167.5 1177.5 1415.0
3 4 5 1415.0 1415.0 1415.0 1515.0 1577.5

LB = Lag time Begins; LE = Lag time Ends; SB = Setup Begins; SE = Setup Ends;
PB = Processing Begins; PE = Processing Ends.
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Table 4.5: Sublot flowtime related performance measure (fmax and ftotal)

j s es,j ds,j fs,j

1 1 100.0 2587.5 2487.5

2 1 313.0 2257.4 1944.4
2 504.6 2597.4 2092.8
3 120.0 2599.8 2479.8

3 1 920.0 2165.2 1245.2
2 960.0 2603.8 1643.8
3 1200.5 2456.5 1256.0

4 1 530.0 2583.6 2053.6
2 220.0 1577.5 1357.5

Maximum 2487.5
Total 16560.6

Table 4.6: Job flowtime and sublot finish-time separation performance measures
(f̂mas, f̂totoal, ĥmas and ĥtotoal)

j êj d̂j f̂j ĥj

1 100.0 2587.5 2487.5 0.0
2 120.0 2599.8 2479.8 342.4
3 920.0 2603.8 1683.8 438.6
4 220.0 2583.6 2363.6 1006.1

Maximum 2487.5 1006.1
Total 9014.7 1787

Optimizing a Single Objective

When we optimize only one objective function term, unaccounted objective function

terms can be adversely impacted. This phenomenon asserts the importance of multi-

objective optimization. To illustrate this reality, we solve Problem-1 by considering one

objective function term at a time. The result is depicted in Figure 4.9. Figure 4.9-(a)

provides the values of the makespan (Z1) when Z1 through Z10 are optimized one at

a time as a single objective function. As it should be the case, the smallest makespan
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Table 4.7: Operation scheduling for Problem-1 with reference to the machines

m r j s o SB SE/PB PE

1 1 3 1 1 840.0 920.0 1342.0
2 3 1 2 1342.0 1422.0 1783.8
3 3 1 3 1783.8 1883.8 2165.2
4 3 3 3 2165.2 2175.2 2456.5
5 3 2 3 2456.5 2466.5 2603.8

2 1 2 3 1 0.0 120.0 303.0
2 2 1 1 303.0 313.0 494.6
3 2 2 1 494.6 504.6 640.0
4 2 2 2 640.0 720.0 1058.5
5 2 2 3 1098.5 1178.5 1652.5
6 2 3 3 1652.5 1667.5 2308.1
7 2 2 4 2308.1 2428.1 2597.4

3 1 2 3 2 303.0 403.0 792.0
2 2 1 2 792.0 812.0 1197.8
3 2 1 3 1237.8 1317.8 1907.8
4 2 1 4 1907.8 2007.8 2257.4
5 2 3 4 2338.1 2348.1 2599.8

4 1 4 2 1 120.0 220.0 520.0
2 4 1 1 520.0 530.0 830.0
3 4 1 2 830.0 930.0 1167.5
4 4 2 2 1167.5 1177.5 1415.0
5 4 2 3 1415.0 1515.0 1577.5
6 1 1 2 1577.5 1817.5 2092.5
7 1 1 3 2112.5 2212.5 2587.5

5 1 1 1 1 0.0 100.0 750.0
2 3 2 1 750.0 960.0 1185.5
3 3 3 1 1185.5 1200.5 1662.8
4 3 3 2 1662.8 1762.8 2104.4
5 3 2 2 2104.4 2114.4 2281.1
6 4 1 3 2281.1 2521.1 2583.6

SB = Setup Begins; SE = Setup Ends; PB = Processing Begins; PE = Processing Ends.

(about 2608) is achieved when Z1 is considered as the only term in the objective function.

However, when another term alone is optimized, makespan greatly deteriorates. For

instance, when only Z2 alone is optimized, the value of the makespan increases to 5067
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Table 4.8: Machine workload related performance
(l̂max and l̂max − l̂min)

m workload utilization

1 2603.8 100.0
2 2557.4 98.2
3 2176.1 83.6
4 2567.5 98.6
5 2583.6 99.2

Maximum workload = 2603.8; Total workload = 12488.4;
Maximum workload difference = 427.7

Table 4.9: Values of the objective function components

Objective Term Notation Value

Makespan Z1 2603.8

Maximum Sublot Flowtime Z2 2487.5

Total Sublot Flowtime Z3 16560.6

Maximum Job flowtime Z4 2487.5

Total job flowtime Z5 9014.7

Maximum Sublot Finish-time Separation Z6 1006.1

Total Sublot finish-time Separation Z7 1787.1

Maximum Machine Load Z8 2603.8

Total Machine Load Z9 2603.8

Maximum Machine Load Difference Z10 427.7

(94% increase). Figures 4.9-(b) is a plot of the maximum sublot flowtime (Z2) when Z1

through Z10 are optimized one at a time. Its minimum value is 1468 when Z2 alone is

optimized. This value increases to 2431 when Z1 alone is optimized. A single objective

optimization of Z6 through Z10 has significantly negative impacts on Z2. A similar

phenomenon is observed on all the other objective function terms, as can be seen from

Figures 4.9-(c) to (j).

Here, it is important to note that the magnitude of the severity of a single objective

optimization on the objective function terms that are not incorporated increases as the

problem size increases. To exemplify this fact, we conducted a similar analysis on a

relatively large problem (Problem-4), and the result is compiled in Table 4.10. For
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instance, when the total machine load (Z9) was the only objective function, its value

is 573,164 minutes (see at row-Z9 column-Z9), which increases by 84,386 minutes when

makespan (Z1) is the only objective function optimized (see at row-Z1 column-Z9). This

increment was only 721 minutes in a similar analysis in Problem-1. The total sublot

flowtime in Problem-4 was equal to 2,115,095 when it was the only objective function

(see row-Z3 column-Z3). This value increases to 4,004,945 when minimizing maximum

machine load is the only objective (see row-Z8 column Z3). The last two rows of Table

4.10 show the best and the worst observed values of each objective function term. From

these rows, we can see a considerably large gap between the best and the worst values

of an objective function term. The best value of an objective function term is obtained

when it is the only term optimized, and the worst is found when it is unaccounted for

optimization. These significantly large deteriorations of unaccounted objective function

terms in a large size problem greatly emphasize the need for multi-objective optimization

in real industrial scheduling problems that are usually large in size.

Jointly Optimizing Z1, . . . , Z10

In the previous section, the best and the worst values of the various objective function

terms were determined when only one term was optimized at a time. In this section, we

attempted to illustrate the ability of the proposed algorithm to jointly optimize all the

terms and achieve values close to their best-known ones. In doing so, we first provide a

plot of the values of the various objective function terms of Problem-4 in Figure 4.10-(a)

when makespan is the only objective function optimized. In this figure, the values of the

objective function terms are plotted on a scale between 0 and 1, corresponding to the

best and worst values, respectively. Makespan achieves its minimum value since it is the

only objective optimized. However, from this plot, one can see that several objective

function terms, namely Z6, Z7, and Z9, are not close enough to their respective best

values obtained when each one of them was the only objective optimized. Next, we

solve the same problem to jointly optimize all the objective function terms with equal

weights set at one. The resulting values of the objective function terms are plotted in
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Figure 4.10-(b). In this plot, except for Z9, all the values of the objective function terms

are close to their best values and far from their worst values. Finally, Problem-4 was

optimized with increased weight for Z9, and the values of terms are plotted in Figure

4.10-(c). From this final plot, one can see that all the terms of the objective function

are much closer to their best values than to their worst values. This result demonstrates

the ability of the proposed algorithm to jointly optimize all the objective function terms

considered in the proposed model.

Further Empirical Study of Objective Functions

In this section, we conducted additional empirical investigations to illustrate the in-

teraction of the objective function terms and their relevance in providing good quality

solutions. A total of eleven cases were investigated. The cases differ by the values of the

weights of the objective function terms. The settings for the weights for these eleven

cases are given in Table 4.11. In each case, the genetic algorithm was executed ten

times, and the average values of the objective function terms were collected. Table 4.12

provides these values.

Case-1 and Case-2 were considered to investigate flowtime performance measures.

Case-1 attempts to minimize the maximum and total sublot flowtime (Z2 and Z3),

whereas Case-2 attempts to minimize the maximum and total job flowtime (Z4 and

Z5). The objective function terms Z1, Z8, Z9 and Z10 are also optimized. In shifting

from Case-1 to Case-2, the total job flowtime (Z5) changes from 829235 to 823195 (less

than 1% improvement). However, the total sublot flowtime (Z3) changes from 1017100

to 1143060 (12% deterioration). Moreover, Case-2 increased the total workload (Z9)

by 10396 minutes (a change from 561306 to 571702 minutes). Hence, optimizing sublot

flowtime is more desirable than optimizing job flowtime. However, as it can be seen from

the values of Z2, Z3, Z4, and Z5 in Case-0, optimizing both sublot and job flowtime

simultaneously can result in a favorable solution with respect to the overall flowtime

performance.

In both Case-1 and Case-2, the maximum and total sublot finish-times separations
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Figure 4.9: Values of the objective function terms in Problem-1 when only one objective
function term is optimized

(Z6 and Z7, respectively) are significant compared to Case-3 and Case-4. Case-3 and

Case-4 are similar to Case-1 and Case-2, respectively. However, in these two cases, Z6

and Z7 were also minimized. As it can be seen from the result, Z6 and Z7 were reduced

substantially with minimal impacts on sublot and job flowtime perforce measures. The

result confirms the importance of minimizing sublot finish-time separation along with

sublot and job flowtime, which is initially reported in this work.
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Figure 4.10: Values of the objective function terms when (a) only makespan Z1 is op-
timized, (b) all terms are jointedly optimized with equal weights set at one, and (c) all
terms optimized with W9 = 150 and other weights set at one.

Another observation from the empirical study in this section is the importance of

jointly minimizing the maximum and the total of a performance measure. For instance,

let us examine Case-1, Case-5, and Case-6. In Case-1, both maximum (Z2) and total (Z3)

sublot flowtimes are minimized. Case-5 minimizes Z2 but not Z3, and Case-6 minimizes

Z3 but not Z2. The values of (Z2, Z3) in Case-1, Case-5 and Case-6 are (23684, 1017100),

(23470, 1195014), and (24578, 1013725), respectively. In shifting from Case-5 to Case-6,

Z2 deteriorates by 4.7%, and Z3 improves by 15%. Thus, minimizing Z2 alone results

in an unfavorable value of Z3 and vice versa. By adopting Case-1, Z2 deteriorates only

by 0.9% from its value in Case-5, and Z3 deteriorates only by 0.33% form its value in

Case-6. Thus, instead of minimizing the maximum or the total sublot flowtime alone,

it is preferable to minimize both of them simultaneously. By examining Case-2, Case-7,

and Case-8, we can also arrive at a similar conclusion regarding Z4 and Z5.
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In literature, workload balancing in FJSP has been handled either by minimizing

the workload of the most loaded machine (maximum workload Z8) or minimizing the

total workload (Z9). Accordingly, Case-9 minimizes Z8, and Case-10 minimizes Z9.

However, in both cases, we can see that the difference between the workloads of the most

loaded and the least loaded machines (maximum workload difference, Z10) is significant

compared to all the cases from Case-1 to Case-8 where Z10 is also minimized along with

other objective function terms. Thus, for a better workload balancing, it is desirable

to minimize Z10 along with Z8 and Z9. The minimization of Z10 to improve workload

balancing is reported for the first time in this work.

Table 4.11: Values of the weights of the objective function terms in Problem-4 in eleven
different cases

Objective Function Term Weight
Case W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1
2 1 0 0 1 1 0 0 1 1 1
3 1 1 1 0 0 1 1 1 1 1
4 1 0 0 1 1 1 1 1 1 1
5 1 1 0 0 0 0 0 1 1 1
6 1 0 1 0 0 0 0 1 1 1
7 1 0 0 1 0 0 0 1 1 1
8 1 0 0 0 1 0 0 1 1 1
9 1 1 1 1 1 1 1 1 0 0
10 1 1 1 1 1 1 1 0 1 0

4.4.2. Performance Evaluation of RGA and 2SGA

Initial Solution Quality

Bajer et al. (2016) and Rahnamayan et al. (2007) argued that the quality of the initial

population is an important factor in determining the abilities of evolutionary algorithms

to find acceptable solutions with minimal execution time. With this in mind, Defersha
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Table 4.12: Average values of the objective function terms in Problem-4 from ten repli-
cations in each cases (Cases 0 to 10).

Objective Function Terms
Case Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

0 24550 23710 1057020 23762 822152 425 2030 22909 565394 559
1 24524 23684 1017100 24206 829235 4642 15476 22657 561306 366
2 24640 23964 1143060 24021 823195 3222 14307 23047 571702 372
3 24891 24183 1053079 24286 847180 375 1337 22717 562619 396
4 24789 24322 1127425 24355 835824 579 2680 22959 569595 376
5 24503 23470 1195014 24297 877040 5370 23064 23073 573483 285
6 24737 24578 1013725 24618 831675 4550 14209 22639 561504 308
7 24406 23822 1176456 23839 874850 4198 17824 22977 571159 258
8 24546 24447 1088981 24476 815426 4218 15152 22872 568343 289
9 24842 23935 998845 23950 811569 84 376 22987 562417 2047
10 24756 23870 958741 23881 804054 94 319 23844 552727 4202

The setup load is the portion of the total workload Z9 required to perform setup operations.

Table 4.13: Basic features of the problems considered for performance evaluation of the
proposed algorithm

Problem M J Sj (max) Oj (min, max) NAMPJ* (min, max)

4 25 40 4 (8 15) (3, 6)
5 30 60 4 (8, 16) (3, 6)
6 40 80 4 (10, 18) (2, 8)
7 50 100 4 (10, 20) (2, 8)

*NAMPJ = Number of Alternative Routing per Operation.

Table 4.14: Algorithm parameters

Parameters Values

Population Size 2000
Tournament Size Factor α 0.005
Crossover Probability 0.85
Mutation Probability 0.15
Number of generation for the first sage in 2SGA 2500
Total nubmer of genration 10000
W1, W2, · · · , W10 1.0

Note: Tournamet size = α× Population size
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and Rooyani (2020) illustrated that one of the key factors for the success of their Two-

Stage GA is its ability to find initial solutions with greatly improved makespan. In

this research, we further illustrate the ability of Two-Stage Genetic Algorithm in finding

improved initial population not only with respect to makespan but also with many other

performance metrics of the multi-objective FJSP lot streaming presented in Section 4.2.2.

Table 4.15 provides the means and the standard deviations of the objective functions Z1

to Z10 in the initial population of 2000 individuals in Problem-1 and Problem-4. From

this table, it can be clearly seen that the mean and the standard deviation of values

of the various objective functions in the initial population are greatly improved as we

move from RGA to 2SGA. For instance, the mean and standard deviation of maximum

sublot flowtime (Z2) improves by 41 % and 57 %, respectively, in Problem-1 and by

47 % and 79%, respectively, in Problem-4. The histogram for the weighted sum of all

the objective function terms of the initial population is displayed in Figure 4.11. The

histogram shows that 2SGA results in highly improved initial solution quality in solving

the proposed multi-objective FJSP lot streaming problem.

Table 4.15: Mean and standard deviation of the objective function terms in the initial
population under RGA and 2SGA.

Problem-1 Problem-4
Objective Mean StDev Percentage Mean StDev Percentage
Term RGA 2SGA RGA 2SGA Improvement∗ RGA 2SGA RGA 2SGA Improvement∗

Z1 6317 3767 972 412 (40, 58) 58513 31277 3293 748 (47, 77)
Z2 5477 3221 1045 447 (41, 57) 57435 30524 3336 690 (47, 79)
Z3 30138 18243 6116 2422 (39, 60) 4574999 2476978 299643 89360 (46, 70)
Z4 5895 3483 1003 438 (41, 56) 57957 30846 3312 705 (47, 79)
Z5 18954 10829 3420 1035 (43, 70) 2081854 1122475 119664 17273 (46, 86)
Z6 2896 1491 1171 581 (49, 50) 21250 10607 4788 2282 (50, 52)
Z7 6297 3084 2772 1232 (51, 56) 248166 116497 40929 15422 (53, 62)
Z8 5058 3336 894 291 (34, 67) 37728 29216 2621 538 (23, 79)
Z9 14816 13835 596 550 (7, 8) 682856 667035 6709 6442 (2, 4)
Z10 3789 1197 1228 532 (68, 57) 19471 5945 3411 1183 (69, 65)

∗The percentage improvement in Mean and StDev (Mean, StDev) in the initial population achieved by 2SGA.

Convergence Behaviors

The previous section illustrated that 2SGA resulted in an improved initial population in

all the objective function terms. In this section, we compare the convergence behavior
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Figure 4.11: The distribution of the objective function of initial populations of 2SGA
and RGA both in Problem-1 and Problem-4.

of 2SGA and RGA while solving large-size problems (Problems 4 to 7). The basic

features of these problems are given in Table 4.13. The parameters of the GAs used

in this numerical example are given in Table 4.14. Figure 4.12-(a) to (j) show the

convergence along the objective function terms Z1 to Z10, respectively, of 2SGA and

RGA in solving Problem-4 while all these terms are simultaneously optimized with

equal weight (W1 = W2 = · · · = W10 = 1). Each convergence curve is an average of 40

replications. From these convergence curves, we can see that 2SGA was able to converge

more rapidly than RGA along Z1 to Z5, Z8, and Z9. In terms of these objective function

terms, 2SGA was able to find better solutions just in a few hundred generations than

those determined after more than 10,000 generations by RGA. In terms of Z6, Z7, and

Z10, RGA was able to converge more rapidly than 2SGA. However, 2SGA was able

to catch up with RGA just in a few hundreds of generations right after it changed

search stage, which occurred at 2500 generation. Figure 4.12-(k) is the convergence of

2SGA and RGA in terms of the weighted sum of all the objective function terms, which

clearly shows the superiority of 2SGA over RGA. From the convergence graphs, the

first stage of 2SGA was able to achieve convergence within the first few hundreds of

generations. For instance, if 2SGA changed its search stage at 1000 generation, it could

provide highly improved solutions in just 3000 generations that cannot be archived

using RGA after many thousands of generations. 4.12-(l) depicts the histograms of
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the objective function of the final solutions in 40 trials both in 2SGA and RGA. In

these histograms, 2SGA achieves about 9.5% and 35.6% improvements in the mean and

standard deviation, respectively. An improvement in the standard deviation by 2SGA

represents its robustness in finding good solutions more consistently than RGA. Similar

results were obtained while solving Problems-5, 6, and 7, as shown in Figure 4.13. The

computational times required by 2SGA and RGA to complete the 10,000 generations

using the parameters in Table 4.14 are approximately 120, 335, 840, and 1410 minutes

in Problems 4, 5, 6, and 7, respectively.

Improvement through Parallelization

Parallelizing genetic algorithms using a high-performance parallel computing platform

has been well recognized as a viable technique to enhance their abilities in solving many

complex and large-size problems. Its application in solving shop scheduling problems

has also been widely reported as reviewed in Luo and El Baz (2018). In this research, we

adopted a randomly connected multi-population parallel GA (P-GA) proposed in De-

fersha and Chen (2008) to illustrate the performance improvement that can be achieved

in both RGA and 2SGA. The P-GA consists of several subpopulations where each of

them is assigned to a dedicated CPU. A subpopulation evolves independently and com-

municates periodically by sending and receiving selected solutions to and from other

subpopulations. Whenever communication occurs, the CPU with rank 0 randomly gen-

erates a communication matrix and broadcasts it to all other CPUs. The migration of

the copies of the selected solutions follows the route generated according to the commu-

nication matrix. An example communication matrix and the resulting migration route

for a small instance of parallelization are depicted in Figure 4.14 where the CPUs are

ranked from 0 to 6. The density of the communication matrix, the frequency of com-

munication, and the strategy for the selection and replacement of migrants from the

source and to the destination subpopulations are key parameters for this parallelization

technique. An investigation of these parameters is not within the scope of this research.
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Figure 4.12: The convergence of 2SGA and RGA in solving Problem 4 while all the
objective terms are optimized simultaneously. (Each convergence graph is an average
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trials).
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Figure 4.13: The convergence of 2SGA and RGA in solving Problems 4, 5 and 6. (Each
convergence graph is an average of 40 trials. The histograms are for the final values of
objective function in 40 trials.)

In this study, we used a total of 80 concurrently available CPUs in high perfor-

mance parallel computing platform to implement the Parallel RGA (P-RGA) and the

Parallel 2SGA (P-2SGA). Problems 4, 5, 6, and 7 were solved using both the sequential

and the parallel versions of these algorithms using a subpopulation size of 2000. The

subpopulations were allowed to communicate every 30 generations. The change of stage

for 2SGA occurs at 2500 generations. The computation was terminated after 10,000

generations. The resulting convergence graphs are given in Figure 4.15. From these

graphs, one can see that parallelization brings performance improvement both in RGA

and 2SGA. However, the very important finding in this investigation is that the sequen-

tial 2SGA using a single CPU outperforms the parallel RGA that uses 80 CPUs. This

finding asserts the superiority of 2SGA over RGA in solving the proposed multi-objective

FJSP lot streaming problem.
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Figure 4.14: Randomly connected topologies for a given communication matrices
(adopted from Defersha and Chen (2008)). Note: Communication matrix and topol-
ogy is generated every time before solution migration occurs.

4.4.3. Empirical Analysis of Algorithm Parameters

Selection Operators

In this section, we present comparative empirical studies on the various selection oper-

ators presented in Section 4.3.5. The comparisons are presented in terms of the con-

vergence behavior of 2SGA in solving Problem 4, whereas similar results were obtained

in solving several other problems. The first of these imperial studies is aimed at com-

paring the three fitness transformation functions in Eqs. (4.60) to (4.62) used in the

proportional selection method. Figure 4.16 provides the average convergence from ten

test runs using these three different fitness transformation equations. As it can be seen

from this figure, Eqs. (4.60) and (4.61) resulted in similar convergence behaviors of the

algorithm. In contrast, the transformation function in Eq. (4.62) resulted in a much

better convergence of 2SGA in using the proportional selection method.

The second empirical study investigates the impact of tournament size in tour-

nament selection. Figure 4.17 depicts the results of this study. This figure shows that

tournament selection with a smaller tournament size is preferred in solving the pro-

posed mathematical model using 2SGA. Lastly, a comparison of proportional, linear
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Figure 4.15: Improvements of convergence behaviours of RGA and 2SGA using paral-
lelization technique.

ranking and tournament selection is conducted where the resulting convergence graphs

are given in Figure 4.18. This figure shows that the tournament selection resulted in an

improved convergence of the proposed 2SGA. Hence, tournament selection with a small

tournament size is the preferred selection operator in the proposed algorithm.

Crossover and Mutation Probabilities

In the proposed algorithm, there are seven crossover and six mutation operators. As-

signing probabilities individually for these thirteen operators and simultaneously tuning

them can be a daunting task. Instead, in this work, we suggested the crossover and mu-

tation operators be assigned one crossover and one mutation probability, respectively.
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With this scheme, we performed an Analysis of Variance (ANOVA), where mutation

and crossover probabilities are the only two factors, and the objective function is the
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Figure 4.18: Convergence of 2SGA under three different selection operators while solving
Problem-4.

response. We chose six levels for each of these factors. The levels for the mutation

and crossover probabilities are {0.05, 0.15, 0.25, 0.35, 0.45, 0.55} and {0.75, 0.80, 0.85,

0.90, 0.95, 1.00}, respectively. For each factor level combination, we conducted five

replications. Hence, the experiment requires solving a problem 180 times. The genetic

algorithm uses a different seed for its random number generator in each replication of

the experiment.

The results of ANOVA for Problem-4 are presented in Table 4.16 and Figure 4.19.

The P-values corresponding to the main effects of mutation and crossover probabilities

are zero, implying that these two factors have statistically significant effects on the
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final solution quality. On the other hand, the P-value for the interaction effect is very

high (compared to a typical significance level α = 0.05), which indicates the absence

of interaction between these two factors. This lack of interaction simplifies parameter

tuning allowing the user to optimize them independently. The plots of the main effects

in Figure 4.19 show that the mutation probability needs to be set close to 0.35, and the

crossover needs to be set at higher values between 0.90 and 1.00. The residual plots do

not indicate unusual patterns, confirming the adequacy of the ANOVA. The Analysis also

rendered very similar results on several other problems of a varying size considered in this

research. Hence, the recommended values of the mutation and crossover probabilities

can be used to solve different sets of problems using the proposed algorithm.

Table 4.16: Output of Analysis of Variance for Problem-4.

Source DF Adj SS Adj MS F-Value P-Value

Mutation Probability 5 1418299280 283659856 93.7 0.000
Crossover Probability 5 91944634 18388927 6.03 0.000
Mutation Probability*Crossover Probability 25 49082335 1963293 0.64 0.901

Error 144 438889368 3047843
Total 179 1998215617

DF = Degrees of Freedom; Adj SS = Adjusted sum of square; Adj MS = Adjusted mean square.
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4.5. Discussion and Conclusion

The recent trend in manufacturing scheduling is in developing efficient algorithms for

very complex and comprehensive scheduling problems. Following this trend, we devel-

oped an efficient Two-Stage Genetic Algorithm and testing its effectiveness on classic

and comprehensive FJSPs that is presented in Chapter 3 and published in Rooyani

and Defersha (2019) and Defersha and Rooyani (2020). In this chapter, we extended

the application of the Two-Stage Genetic Algorithm on a comprehensive FJSP that

already incorporates (1) sequence-dependent setup time, (2) attached and detached na-

ture of setups, (3) machine release date, and (4) lag time in two folds. We expand the

comprehensive FJSP (1)to solve lot streaming problem while at the same time (2) to

incorporate multiple objectives. The objective function terms included in this model

are the minimization of (1) makespan, (2) maximum sublot flowtime, (3) total sublot

flowtime, (4) maximum job flowtime, (5) total job flowtime, (6) maximum sublot finish-

time separation, (7) total sublot finish-time separation, (8) maximum machine load,

(9) total machine load, and (10) maximum machine load difference. We generated sev-

eral numerical to illustrate the interaction of the various objective function terms and

their relevance in providing better solution quality, and concluded the greater need for

multi-objective optimization in larger problems. We also investigated the ability of the

Two-Stage Genetic Algorithm to jointly optimize all the objective function terms and

showed that the algorithm can generate initial solutions that are highly improved in

all of the objective function terms. It also outperforms the regular genetic algorithm

in convergence speed and final solution quality in solving the multi-objective FJSP lot

streaming. We also demonstrate that high-performance parallel computation can fur-

ther improve the performance of the Two-Stage Genetic Algorithm. Nevertheless, the

sequential Two-Stage Genetic Algorithm with a single CPU outperforms the parallel

regular genetic algorithm that uses many CPUs, asserting the superiority of the Two-

Stage Genetic Algorithm in solving the proposed multi-objective FJSP lot streaming.

The result of this research is published in Rooyani and Defersha (2022).
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Following are the list of observations and conclusions:

1. The magnitude of the severity of a single objective optimization on the objective

function terms that are not incorporated increases as the problem size increases.

The result emphasizes the need for multi-objective optimization in real industrial

scheduling problems that are usually large in size.

2. Optimizing sublot flowtime is more desirable than optimizing job flowtime. How-

ever, optimizing both terms simultaneously can also result in favorable solutions with

respect to the overall flowtime performance.

3. In lot streaming, one sublot of a given job may be finished much sooner than the

other sublot of the same job. This may increase work-in-process inventory. The

newly proposed objective function terms (minimize the maximum sublot finish-time

separation and total sublot finish-time separation) can alleviate this problem with

minimal impact on sublot and job flowtime.

4. Instead of minimizing the maximum or the total sublot flowtime, it is advantageous

to minimize both its maximum and total values simultaneously. The same is true

with the other performance measures (job flowtime, sublot finish-time separation,

machine workload).

5. Workload balancing in FJSP may not be fully achieved by minimizing the maximum

or the total workload or both. A newly proposed objective function term (minimizing

the maximum workload difference), can result in a better workload balance when

considered along with the minimization of the maximum and/or the total workload.

6. The solution representation and the corresponding decoding of the first stage of the

Two-Stage Genetic Algorithm can generate initial solutions that are highly improved

in all the ten objective function terms.

7. The Two-Stage Genetic Algorithm can jointly optimize all the ten objective func-

tion terms of the multi-objective FJSP lot streaming considered in this research and

greatly outperform the regular genetic algorithm.
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8. Parallel computation can bring performance improvement in both the Two-Stage GA

and the regular GA. However, the very important finding is that the sequential Two-

Stage GA using a single CPU outperforms the parallel regular genetical algorithm

that uses many CPUs in solving the proposed multi-objective FJSP lot streaming

problem.

9. The performance of the proportional section method can be significantly improved

by the appropriate choice of the fitness transformation function.

10. Proportional, linear ranking and tournament selection can result in comparable per-

formance. However, tournament selection with smaller size of tournament slightly

outperforms the other two.

11. Analysis of variance shows the lack of interaction between mutation and crossover

probabilities. Thus, the two probabilities can be tuned independently.

The Two-Stage Genetic Algorithm may not be directly applicable in scheduling

problems with the objective of minimizing earliness-tardiness. In particular, the greedy

nature of the first stage is based on finding a schedule that finishes the jobs as early

as possible, which is against minimizing earliness. For instance, finishing jobs too early

may represent excess work-in-process in a JIT environment. Chapter 5 includes the de-

velopment of a modified Two-Stage Genetic Algorithm to incorporate the minimization

of earliness while including the outsourcing.
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Chapter 5

Earliness and Tardiness Scheduling

with Assembly and Outsourcing

Extension

5.1. Introduction

In chapter 3, we have implemented the Two-Stage GA on the FJSP with the machine

release date, lag time, and detached or attached sequence dependent setup time. Chapter

4 extended the application of Two-Stage GA to a multi-objective FJSP with 10 objectives

varied from minimizing makespan and flowtime to machine load maximization. Several

numerical examples proved the ability of 2SGA to jointly optimize all of those objectives.

However, as we will describe in this chapter, the Two-Stage GA has a pragmatic issue

when it comes to minimizing the earliness and tardiness of the jobs with the desired

completion time or due date. It was expected since the most novel idea in developing

the Two-Stage GA is adding a greedy stage to assign the operation to the machine

that can complete it the soonest. So in this chapter, we will extend the work further

to address an FJSP with jobs with due dates, earliness, and tardiness penalties, along

with other jobs that should be completed as soon as possible. Additionally, these jobs

have assembly relationships with some outsourced operations, unlike the classical FJSP
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approach, where the jobs are independent, and each operation has at least one capable

machine. The FJSP model in this chapter still has detached or attached sequence

dependent setup time and is multi-objective with 3 minimization objectives of “On-time

completion” for the jobs with due dates and “makespan” and “total completion time”

for the jobs with no due dates.

5.1.1. Earliness and Tardiness (E/T) scheduling

In many manufacturing systems, especially Make To Order (MTO) types, jobs have due

dates or planned completion dates, either set by the customer or the manufacturing com-

pany itself. However, it is clear that based on the production limitations, not every job

finishes on time. The jobs completed early must be stored as finished-goods inventory,

causing earliness costs, and the jobs completed after their due dates incur penalties and

customer dissatisfaction. In order to avoid these unnecessary costs and keep the com-

petitive edge in the current market conditions and fierce global competitiveness, many

manufacturing companies have adopted the Just-In-Time (JIT) strategy that demands

the scheduling system to complete the jobs as closely as possible to their due dates and

to minimize the sum of earliness and tardiness costs.

The JIT inventory strategy for supply chain management has been applied in

North American industries since the early 1970s. However, it was about a decade later

that researchers like Baker and Scudder (1990) started to address scheduling problems

to minimize earliness and tardiness costs (Kelbel and Hanzálek (2011)). Mousakhani

(2013) reported that minimization of total tardiness is the most common objective func-

tion among due date-based criteria. Similarly, Fuchigami and Rangel (2018) reported

tardiness measures as the second most popular objective function right after makespan

among practical scheduling studies and case studies they have reviewed. Please refer

to section 2.2.3 for a more detailed literature review on Earliness and Tardiness (E/T)

scheduling.

These E/T scheduling systems aim to reduce inventory costs (also called waste),
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including quantity, value, and shelving duration of the work-in-process (WIP) and fin-

ished good inventory. In addition to the direct inventory cost, jobs that are finished

early cause cash flow issues, production congestion, and risk of damaged goods due to

extra material handling. Similarly, late jobs in addition to customer dissatisfaction may

also result in lateness penalties, contractual liquidated damages, customer loss, and idle

times in subsequent production processes. So E/T scheduling, as one of the core tech-

nologies to support JIT production philosophy, became an important research branch in

the production scheduling field.

Most classic flexible job shop scheduling problems use machines, jobs, and opera-

tions as decision variables. However, E/T scheduling as a modified type of FJSP that

includes JIT objectives needs to consider other decision variables. Among different de-

cision variables, the job release time is one of the most critical variables that must be

controlled to minimize earliness and tardiness costs. Zambrano Rey et al. (2015) reports

only a few studies in which release dates are considered in the algorithm’s encoding

scheme and then lists four types of methods that researchers considered the job release

time as below:

1. Immediate release where jobs are released as soon as they arrive or become avail-

able. It is the most common type, either when all jobs are released at time zero

or when they arrive at the fixed value or randomly,

2. Load-limited methods where jobs are released according to the current workload,

3. Release based on the flowtime and due date information,

4. Job release time considering both workload and job due dates.

As we will discuss in 5.2 and 5.3 in more detail, our model delays the start of the

first operation of the jobs with due dates as long as is required to minimize E/T costs,

even though they are ready to be released at time zero.

5.1.2. Subassembly Requirement

Assembly Job Shop (AJS) is an extension of job shop (JS) where some jobs have assembly

relationships, unlike the classic JSP and FJSP approach, where the jobs are independent.
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It is common in the real world that the final product is made of several components

(purchased items) and/or subassemblies built in-house and should go through a sequence

of operations before the assembly stage. Even these subassemblies can have their own

components and subassemblies. This means any job with subassembly cannot start

unless all the subassemblies (child) are finished. Similarly, the subassembly jobs are

not considered complete even after all their operations are finished. They must be

assembled with other subassemblies into the final product. So the assembly scheduling

process concerns both resource availability and completion of all subassemblies on several

levels. This “assembly requirement or constraint” is similar to the classical “sequence

constraint” but between the different jobs instead of different operations of a single job.

As discussed in chapter 1, FJSPs are among the most difficult optimization problems and

are NP-Hard, so we should consider that assembly requirement increases the difficulty of

FJSP even further. Although AJS has a long presence in industrial civilization history,

the Assembly Scheduling Problem (ASP) only appeared in the research world for the

first time in the 1960s to solve a multilevel assembly scheduling problem under a random

environment (Li et al. (2022b)). We provided a more detailed literature review of the

ASPs in section 2.2.4.

The hierarchy of the product tree is called the Bill of Material (BOM), usually

presented in the hierarchical format and indicates all the components and subassemblies

and their required quantities to build a single unit of the final product. In the hierarchical

BOM, the highest level displays the final product, and the lowest level all the purchased

components and raw materials. The subassemblies will appear in the middle levels (can

be several levels) along with some other components being assembled into the next level

product. All these components and subassemblies should be processed (and obviously

scheduled) from the bottom up to build the final product. BOM is usually translated into

a matrix named Precedence Constraint Matrix (PCM) in order to be used in scheduling

problems and understood by computer programs. Row and column numbers of the

precedence constraint matrix correspond to job numbers, and the elements indicate the

assembly relationship of the jobs, usually in binary format. We also used PCM in both
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the mathematical modeling of our problem (described in section 5.2) and the Two-Stage

GA coding (described 5.3) to identify the subassembly relationship between jobs.

5.1.3. Outsourcing Extension

With the continuous promotion of manufacturing globalization and the increasing com-

plexity of products, manufacturing companies have this opportunity to define their core

business and become highly specialized in it while outsourcing the auxiliary processes.

This is specifically more common in industrially advanced regions, such as southwestern

Ontario, where various manufacturing enterprises are densely distributed and low-cost

outsourcing services are readily available. The author also witnessed in his career work-

ing with several manufacturing companies that almost every manufacturer is outsourc-

ing some processes. Outsourcing allows manufacturers to focus their resources to get a

competitive advantage on what they are good at and outsource the necessary auxiliary

processes instead of trying to share the limited capital fund to acquire necessary ma-

chines and professionals. Another situation that motivates manufacturing to outsourcing

is when on-time delivery is critical and subcontracting is possible at a reasonable cost

while the company is at full capacity. This is becoming more important when pro-

duction lead time and on-time delivery affect customer satisfaction in this competitive

market. Timely delivery can even be vital for the survival of some companies. For

example, for suppliers of big automotive OEMs where any delay in delivery can shut

down their production line and cost the supplier tremendously as a penalty or newspaper

printing houses that cannot miss a very narrow delivery window. Outsourcing benefits

manufacturing companies in different ways, including reducing production bottlenecks

to improve lead time, decreasing direct and indirect manufacturing costs, or enabling

them to produce more variety of products. Anyway, outsourcing is a common practice

in today’s manufacturing companies due to several reasons like existing manufacturing

constraints and capacity limitations or because of the advantages of external vendors.

Unlike the popularity of outsourcing in the real world, most scheduling models did

not consider outsourcing and assumed all the jobs and operations being done in-house.
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This can be due to the fact that outsourcing introduces a whole level of complexity to

scheduling problems. As we discussed in 2.2.5, not many studies have addressed job shop

scheduling with outsourcing options. So in this chapter, we also incorporated this critical

feature in our FJSP model. Outsourcing is either mandatory (no in-house capability) or

optional (can be done internally too). Also, the company can outsource the whole job

or only a few auxiliary operations of different jobs. Our model covers different scenarios,

jobs can be completely outsourced or have several outsourced operations. It also can

outsource a specific process of one job while doing it in-house for another job. However,

every single operation is either outsourced or done in-house. These considerations come

from the author’s experience that most manufacturing companies rely on third-party

vendors for different auxiliary operations (like special welding, coatings, and machining).

Also, they outsource some processes or the whole job due to limited resources or on-

time delivery considerations even though they can do it in-house. As described in both

the mathematical model in section 5.2 and the Two-Stage GA coding in section 5.3,

an outsourced operation in our model has a lead time that indicates the minimum

time required between completion of the previous operation and becoming available for

outsourcing till it comes back and is ready for the following operation which includes

the transportation time.

5.2. Mathematical Modeling

In this section, we introduce the mathematical model of our proposed FJSP in the

presence of outsourcing, subassembly, and sequence dependent setup that can be either

detached or attached. The jobs in this model either have due dates with E/T cost

or should be finished as early as possible to minimize makespan and total completion

time. This MILP model can be programmed using any optimization packages like Lingo,

Lindo, CPLEX, or GAMS to solve small-size problems. However, to solve larger size

problems in a reasonable time, we have to use meta-heuristic techniques.
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5.2.1. Problem description and notations

In Section 3.2, we introduced both classic and comprehensive FJSP that we used to test

the developed Two-Stage GA, with Section 3.2.1 describing the full mathematical MILP

model with and its notations and equations. All the model parameters and variables

are also listed in the “List of Symbols”. So in this section, we only introduce the newly

added features and skip describing the FJSP with the machine release date, lag time,

and detached or attached sequence dependent setup time concepts.

As we discussed, each job can have multiple subassemblies on multiple levels. To

accommodate the presence of subassembly in our model, Kj,j′ has defined and equals

to 1 if job j′ is an immediate child (subassembly) of job j in Bill of Material (BOM)

and zero otherwise. The parent job can only be started if all its subassemblies are

completed. Also, in this model, each operation is either outsourced (if Uj,o equals 1)

with the outsourcing lead time (turnover time that includes the shipping and receiving

time) of Rj,o, or it is processed in-house (if Uj,o equals 0) with a processing time of Bm,j,o.

Regarding completion (or shipping) time, jobs have a due date (or promised ship-

ping date) of Dj or should be shipped as soon as completed. Ej equals 1 if the job

has promised ship date and equals 0 otherwise. For the jobs with a promised shipping

date, minimizing the total earliness/tardiness (being either shipped early or late) has

been defined as the objective function. While minimizing the total completion time and

the makespan are the objective functions for the jobs with no promised shipping date.

Minimizing total completion time is similar to makespan. However, it tries to shorten

the completion time of every job, while makespan deals with only the longest completion

time and does not concern with the rest.

Here are other parameters and variables that have been used in the proposed

model:

Additional Parameters:

Bm,j,o Process time of operation o on machine m for whole batch of job j (only if

operation o is not outsourced and machine m is capable of processing).
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S∗m,j,o Setup time of operation o of job j on on machine m if operation o is the first

operation to be processed on machine m.

Sm,j,o,j′,o′ Setup time of operation o of job j on on machine m where operation o′ of

job j′ is operation processed immediately before.

Aj,o A binary data equal to 1 if the setup of operation o of job j is attached, or

0 if this setup is detached.

Rj,o Lead time of operation o of job j that is outsourced.

Dj Due date (promised shipping date) for job j.

Rm Maximum number of production runs of machine m where each production

run is indexed by r or u = 1, 2, ...., Rm.

Ω Large positive number.

Variables:

Continuous Variables:

Cmax Makespan of the schedule.

ĉm,r Completion time of run r of machine m.

cj,o Completion time of operation o of job j.

Binary Variables:

xm,r,j,o Binary variable that takes the value 1 if the run r on machine m is assigned

to operation o of job j, 0 otherwise.

zm,r Binary variable that is equal to 1 if run r of machine m has been assigned

to any operation, 0 otherwise.

167



Chapter 5. Assembly and Outsourcing Extension

5.2.2. Mathematical formulation

Objective Functions:

This model has 3 objective functions to cover both types of jobs with and without

due dates. The objective function (Eq. (5.4)) minimizes the makespan that is only

for the jobs without due dates. Similarly, the second objective function (Z2) is the

total completion time for the jobs with no due dates. The Z2 (Eq. (5.2)) assures the

completion time of every job will be minimum, in other words, they all finish as soon as

possible. It is a good addition to the makespan objective function that only minimizes

the longest completion time, and the other jobs can still use the slack (float) time. The

third objective function (Z3) is minimizing the total earliness and tardiness (Eq. (5.3)),

which obviously is for the jobs with due dates. This equation is not linear due to the

presence of the absolute value function. Since optimization packages like Lingo, Lindo,

CPLEX, or GAMS prefer MILP over MINLP (Mixed Integer Nonlinear Programming),

we will transform it to linear form in equation Eq. (5.24).

There are many ways to aggregate the objective functions, but as explained in 4.3,

we will use the scaled weighted aggregated objective function shown in Eq. (5.4). Each

kth objective function will be multiplied by the weights Wk and scaling of Ψk. Weights

Wk represents decision makers’ preference that can be any number, and Ψk is a simple

scaling mechanism explained in Eq. (5.5) where ZIni−max
k represents the maximum value

of objective Zk in the initial GA population. So the magnitude of the maximum values

of objective function terms Z2, and Z3 will have the same values as the maximum value

of Z1.

Z1 = cmax; ∀(j)| Ej = 0 (5.1)

Z2 =
J∑
j=1

cj,o; ∀(j, o)| Ej = 0 & o = Oj; (5.2)
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Z3 =
J∑
j=1

|cj,o −Dj|; ∀(j, o)| Ej = 1 & o = Oj (5.3)

Z =
3∑

k=1

Wk ·Ψk · Zk (5.4)

Ψk =
ZIni−max

1

ZIni−max
k

(5.5)

Subject to:

cmax ≥ cj,o; ∀(j)| Ej = 0 & o = Oj (5.6)

ĉm,r ≥ cj,o + Ω · xm,r,j,o − Ω; ∀(m, r, j, o) (5.7)

ĉm,r ≤ cj,o − Ω · xm,r,j,o + Ω; ∀(m, r, j, o) (5.8)

ĉm,1 −Bm,j,o − S∗m,j,o − Ω · xm,1,j,o + Ω ≥ 0; ∀(m, j, o) (5.9)

ĉm,r −Bm,j,o − Sm,j,o,j′,o′ − Ω · (xm,r,j,o + xm,r−1,j′,o′) + 2Ω ≥ ĉm,r−1;

∀(m, r, j, o, j′, o′)|(r > 1) & ((j, o) 6= (j′, o′)) (5.10)

ĉm,1−Bm,j,o−S∗m,j,o ·Aj,o−Ω ·(xm,1,j,o + xm′,r′,j,o−1)+2Ω ≥ ĉm′,r′ ; ∀(m,m, j, o′, r′)| o > 1

(5.11)

ĉm,r −Bm,j,o − Sm,j,o,j′,o′ · Aj,o − Ω · (xm,r,j,o + xm′,r′,j,o−1 + xm,r−1,j′,o′) + 3Ω ≥ ĉm′,r′ ;
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∀(m, r,m′, r′, j, o, j′, o′)|(r > 1) & (o > 1) & ((j, o) 6= (j′, o′)) (5.12)

xm,r,j,o ≤ Pm,j,o; ∀(m, r, j, o) (5.13)

M∑
m=1

Rm∑
r=1

xm,r,j,o + Uj,o = 1; ∀(j, o) (5.14)

J∑
j=1

Oj∑
o=1

xm,r,j,o = zm,r; ∀(m, r) (5.15)

zm,r+1 ≤ zm,r; ∀(m, r) (5.16)

xm,r′,j,o′ ≤ 1− xm,r,j,o; ∀(m, r, r′, j, o, o′)|(o′ > o) & (r′ < r) (5.17)

xm,r′,j,o′ ≤ 1− xm,r,j,o; ∀(m, r, r′, j, o, o′)|(o′ < o) & (r′ > r) (5.18)

xm,r,j,o and zm,r are binary (5.19)

Outsourcing Equations:

cj,1 ≥ Rj,1 +Kj,j′ · cj′,o′ ; ∀(j, j′, o′) | Uj,1 = 1 & o′ = Oj′ (5.20)

cj,o ≥ cj,o−1 +Rj,o; ∀(j, o) | Uj,o = 1 & o ≥ 1 (5.21)

Subassembly Equations:

ĉm,1 −Bm,j,1 − S∗m,j,1 · Aj,1 − Ω · xm,1,j,1 + Ω ≥ cj′,o′ ;

∀(m, j, o′, j′) | Kj,j′ = 1 & Uj,1 = 0 & o′ = Oj′ (5.22)
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ĉm,r −Bm,j,1 − Sm,j,1,j′′,o′′ · Aj,1 − Ω · (xm,r,j,1 + xm,r−1,j′′,o′′) + 2Ω

≥ cj′,o′ ;

∀(m, r, j, j′, o′, j′′, o′′) | Kj,j′ = 1 & Uj,1 = 0 & o′ = Oj′ & (1, j) 6= (o′′, j′′) & r > 1

(5.23)

Many of the constraint functions of this model are similar to the MILP model of

the original Two-Stage GA presented in section 3.2.1. However, in this new model, in

addition to having new features and new objective functions, we have transformed the

fundamental concept of completion time of each step of the production from cj,o,m to cj,o

that is independent of the machine number. This significantly simplified the required

outsourcing equations and reduced the dimension of the other equations, speeding up

the lengthy solution time. Since we provided a description of the original equations in

section 3.2.1, here we only describe the differences.

Equation (5.6) is similar to the original equation for calculating the makespan with

the only difference of cj,o instead of cj,o,m. Similarly, Eqs. (5.7) and (5.8) calculates the

completion time of each step of the production process if it is in-house while Eqs. (5.20)

and (5.21) are for outsourced processes. Eqs. (5.9) and (5.10) are almost the same as

the original model, except in this model, we do not consider the machine release date

and batch quantity for simplicity. It is important to note that in the calculation of the

machine run time, based on its previous run, setups are considered regardless of their

detached and attached natures since they both will take time from the machines. While

Eqs. (5.11) and (5.12), which calculate the completion time of each run of the machine

based on the previous operation of the job, only consider attached setups (Aj,o =1).

Similar to the original MILP model, Eqs. (5.13) and (5.14) assure operation o of job j

is assigned to a single capable machine of m (Pm,j,o = 1) with the additional condition

that only if it is not outsourced (Uj,o = 0). Equations (5.15) to (5.18) have not changed

from the original model since they only assure the feasibility of the solution in terms of

machine assignment and operation sequencing.

Eqs. (5.20) and (5.21) are handling the outsourcing processes, so they did not
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exist in the original model. Equation (5.20) addresses the situations in which the parent

job’s first operation is outsourced. The outsourced operation can be released as early

as time zero or as soon as the subassembly job is completed (Kj,j′ = 1). Therefore,

the completion time is greater or equal to the outsourcing lead time. It can be greater

(instead of equal) to accommodate the intentional delay (late start) for minimizing ear-

liness/tardiness objective. As per equation (5.21), the completion time of any not-first

outsourced operation is equal to or greater than the completion time of the previous op-

eration plus outsourcing lead time. We will show in the prototype problem (Figure 5.10)

how this equation works even when there are two consecutive outsourced operations (i.e.,

forming a metal plate by one supplier and then powder coating it by another before the

inhouse mechanical assembly starts). Eqs. (5.22) and (5.23) are subassembly equations

that are also not in the original MILP model since no job can be started until all its

immediate subassemblies have been completely processed. These equations,Eqs. (5.22)

and (5.23), assure that the first operation of a parent job only starts after the completion

of the last operation of its subassembly that can be either in-house or outsourced.

Linearizing the Model:

As we discussed, the proposed model is MINLP because of the “absolute value” function

in the earliness/tardiness objective function (equation 5.3). In order to transform it into

a linear equation, we define tj as the absolute value of earliness/tardiness and re-write

the equation (5.3) as equation (5.24) and add 3 more constraints (equations 5.25 to

5.27). Since tj is a non-negative number and is under a minimization objective function,

it will be equal to |cOj ,j −Dj|.

Z3 =
J∑
j=1

tj; ∀(j)| Ej = 1 (5.24)

s.t:

cj,o −Dj ≤ tj; ∀(j, o)| Ej = 1 & o = Oj (5.25)
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− cj,o +Dj ≤ tj; ∀(j, o)| Ej = 1 & o = Oj (5.26)

tj ≥ 0; ∀(j)| Ej = 1 (5.27)

5.3. Genetic Algorithm

Chapter 1 introduced the Genetic Algorithm for the FJSP, and the previous studies in

this field are reviewed in Chapter 2. Then in Chapter 3, we described the developed

Two-Stage GA and proved that it outperforms the regular approach of GA for FJSP. So

in this section, we only focus on describing the modified Two-Stage GA to handle E/T

FJSP in the presence of subassembly and outsourcing without repeating the introduction

or literature review.

5.3.1. Prototype Problem

To describe the modified Two-Stage GA, we have created a prototype FJSP with 6 jobs

and 4 machines. Two of these jobs (job 1 and job 3) are final assemblies which half

of them (job 1) have due dates and the other half (job 3) should finish ASAP. Each

final assembly job has 1 to 3 sub-assemblies in 1 to 2 levels. Figure 5.1 shows the Bill of

Material structure for this prototype problem. Each job has 2 to 4 operations that about

30% of them are outsourced and the remaining operations have 2 to 3 capable machines

with different processing times. Each in-house operation has a sequence dependent

setup that can be attached or detached. In this section, we use this prototype problem

to explain the 2SGA model and its operators, and then we solve it in section 5.4.1 to

explain how the model works.

Tables 5.1 and 5.2 provide all the data for this problem. Table 5.1 includes no. of

operations of each job, outsourcing lead time for outsourced operations, the nature of

the setup, and the processing time for in-house operations. Table 5.2 includes sequence

dependent setup time, including the setup time if the operation is the first operation on
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the machine (S∗m,j,o) and Sm,j,o,j′,o′ where j′, o′ are the previous operation on the machine

m. We should note that Table 5.2 considers the precedence constraint and subassembly

relationship and only shows the sequence dependent setup time for all feasible operation

sequences. For example, there is no setup time for the cases where the future operation

of a specific job is considered as the previous operation on the machine, like for (j, o) =

(2, 2) in the Sm,j,o,j′,o′ we cannot see any (2, 3) or (2, 4) as (j′, o′). Similarly, we cannot

see any operations of job1 as (j′, o′) of job2 in the Sm,j,o,j′,o′ , since job2 is the child of

job1 and needs to be processed completely before job1 can start.

Table 5.1: Data for Jobs for Prototype Problem

job Immediate Operation Outsourcing Attached or (Machine no., Processing T ime)

no. Child no. Lead T ime Detached Setup i ii iii

1 job2 1 – 1 (1,60) (3,60) (4,90)
2 – 1 (1,13) (3,6) (4,5)
3 63 – – –
4 – 0 (1,12) (2,6) (3,5)

2 none 1 42 – – –
2 – 1 (1,50) (2,35) (3,60)
3 – 1 (3,5) (4,7)
4 – 1 (1,30) (4,50)

3 jobs 4&6 1 – 0 (1,52) (3,28) (4,20)
2 – 1 (2,33) (3,42) (4,30)
3 – 1 (2,22) (3,28)

4 job5 1 195 – – –
2 – 1 (3,15) (4,13)
3 – 1 (1,11) (2,9) (4,8)

5 none 1 – 1 (1,45) (3,39)
2 108 – – –

6 none 1 – 1 (1,44) (3,20) (4,20)
2 126 – – –
3 42 – – –

job 1 and job 3 are the final assemblies (shown in 5.1)
job 1 has due date = 800 but job 3 has no due date
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Figure 5.1: Bill of Material (BOM) for Prototype Problem

5.3.2. Solution Encoding and Decoding

The Two-Stage GA has a greedy nature and finds the machine that can finish the job

fastest. So it can easily handle minimizing the makespan, total completion time, or many

other objective functions we addressed in Section 4. However, as the numerical examples

of section 5.4 prove, the Two-Stage GA is not able to minimize the earliness/lateness

objective function for the jobs with due dates. To add this critical feature, the chromo-

some encoding of the Two-Stage GA had to change to make it possible for the algorithm

to intentionally delay the release of the jobs.

The modified 2SGA model for E/T FJSP, described in Section 5.2, has two other

new features of “Subassembly Requirement ” and “Outsourcing Option”. The pres-

ence of the subassembly feature requires the GA to recognize the relationship between

multiple jobs in addition to the relationship between the operations of a single job.

These features are embedded within the GA’s evaluating and chromosome feasibility

mechanisms, and hence there was no need to modify the 2SGA solution encoding. The

outsourcing feature can be coded so that the outsourced operation is assigned to an imag-

inary machine with no capacity limitation that can handle several outsourced operations
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concurrently. In this section, we describe how the original Two-Stage GA, explained in

Chapter 3, is modified to accommodate the E/T FJSP in the presence of subassembly

requirements and outsourcing options.

Section 3.3.1 reviewed the common solution encodings widely used in the literature

to solve FJSPs, so here we only introduce the chromosome encoding of this GA model.

Figure 5.2 shows the solution encoding using the best-found chromosome for Prototype

Problem. As is shown, the chromosome encoding has two segments. The Left-Hand

Side (LHS) chromosome handles the “Intentional Delay” problem. The Right-Hand

Side (RHS) chromosome follows the original chromosome encoding of the Two-Stage

GA and addresses sequencing and assignment problems. In order to lessen the WIP

level, we allow the GA to only add the intentional delay to the very first operation of

each job instead of holding them in between the processes. So the number of genes in the

LHS could be reduced to the number of jobs (instead of the total number of operations

for RHS). Each LHS gene is composed of two parts of “Is-Delayed” (or α) and “Delay-

Time” (or β). “Is-Delayed” is the first element of the gene and is a boolean parameter,

and the second part, “Delay-Time”, indicates the delay duration. If “Is-Delayed” takes

a 0 value, the corresponding job will not be delayed and will be released to the job floor

as soon as possible. However, if it takes the value of 1, the corresponding job will be

delayed, equal to the “Delay-Time”. So the total delay of each job can be calculated by

multiplying the two elements ( α× β) of the corresponding LHS gene. The RHS is the

original solution encoding of the 2SGA described in Section 3.3.1 in which the number of

genes equals the total number of operations. In the first stage, the GA only determines

the sequence of operation for machine assignment but without any machine assignment

in the solution encoding, as shown in Figure 5.2-b. However, in the second stage of the

2SGA, both sequencing and assignment problems are addressed by GA search, hence

the gene is a 3-tuple form of [j, o,m].
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(c) Solution Encoding for the Second Stage of the Search
which RHS Determines both Sequecing and Assignment

Figure 5.2: Solution representation

5.3.3. Genetic Operators

Genetic Algorithms use “Genetic Operators” to evolve generations to improve the fitness

of chromosomes. The main groups of operators are “selection operators”, “crossover

operators”, and “mutation operators”. Section 4.3.5 provides a detailed description of

different types of operators. So this section only focuses on genetic operators specifically

designed to handle “Intentional Delay”, “Subassembly” and “Outsourcing” for the Two-

Stage GA model. For the selection operator, we follow the findings of section 4.4.3 that

suggest tournament selection performs better than other common types for the Two-

Stage GA model. The tournament selection randomly picks a number of chromosomes

(with replacement) and places the fittest one in the mating pool. It repeats this process

to fill the mating pool to equal the population size. In tournament selection, even the

chromosomes with not great fitness value have the chance to be selected. Therefore the
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mating pool has a better diversity that reduces the chance of the GA falling in the local

optimum.

After forming the mating pool, “crossover operators” will be applied to create the

offspring. Similar to the nature, there are two parents who create two offspring that

inherit their genes from both parents. Although, in the GA, the parents are selected

and paired randomly from a mating pool. As explained in section 3.3.2, this Two-Stage

GA model has two crossover operators, which are the modified versions of the Single

Point Crossover Operator (SCO) and Assignment Crossover Operator (ACO). These

two crossover operators are modified to accommodate the chromosome’s LHS segment

that handles the model’s intentional delay.

As shown in Figure 5.3, the modified Single Point Crossover Operator (modified

SCO) arbitrarily selects a point in the parents’ chromosome. Then it copies all the

genes on the left side of the crossover point from one parent, completes the remaining

genes in the same sequence as the other parent, and creates two offspring. As seen in

Figure 5.3, this operator is applied at both stages with a probability of p1. On the other

hand, the modified Assignment Crossover Operator (modified ACO) has different forms

of implementations in stage-1 and stage-2 of the Two-Stage GA. In the first stage, it

only modifies the LHS since there is no machine assignment in the RHS of chromosome

encoding. As it is shown in Figure 5.4, each child takes the “is-delayed” (or α) element of

each gene from one parent and the “delay-time” (or β) from the other parent. However,

the RHS of the child comes from the original parent intact. In stage-2, in addition to

the LHS changes of stage-1, parents exchange the machine assignment to create two

offspring. The ACO is applied with a probability of p2, too.

After the creation of the new generation of offspring, they randomly go through

mutation where “mutation operators” alter their genes. The mutation operators are

applied with a small probability and help improve the GA population’s diversity. Due

to the complexity of the chromosome encoding of Two-Stage GA for FJSP in the presence

of subassembly, outsourcing, and intentional delay, five mutation operators have been

designed. Two mutation operators are applied on the RHS of the chromosome, and the
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other three operators alter LHS genes.

The Assignment Altering Mutation operator is applied by a small probability of p3.

It arbitrarily selects one gene from the RHS and changes its machine assignment only if

it is not outsourced. Figure 5.5 shows how this operator modifies some genes. Since this

operator alters the machine assignment, it is only applied in stage-2 of the Two-Stage

GA. The other RHS mutation operator is Operation Swapping Mutation (OSM), shown

in Figure 5.6. OSM selects a chromosome by the probability of p4 and then switches two

adjacent genes of the RHS only if they are not 1) from the same job and 2) from the jobs

with a parent-child relationship. As is shown in Figure 5.6, the gene (6, 1, 4) is selected.

However, the OSM operator does not switch its position since the adjacent gene, (6, 2, 5),

is the subsequent operation of the same job, and switching their position will make the

chromosome infeasible due to precedence constraints. Similarly, gene (2, 4, 1) that is

adjacent to (1, 1, 1) cannot switch their positions either since job 2 is a subassembly of

job 1. Nevertheless, OSM switches two other selected genes (4, 3, 2) and (3, 2, 2) whose

adjacent genes are not from the same job or have a subassembly relationship.

The other three mutation operators are applied on the chromosome’s LHS or in-

tentional delay segment. The Delay Change Mutation operator changes a radome gene’s

delay-time (or β) from 50% to 150% according to equation Eq. (5.28). In this equa-

tion, rand(0.5, 1.5) is a function that returns a random number in the interval [0.5,1.5]

following a uniform distribution. This mutation operator is being applied by a small

probability of p5, shown in Figure 5.7.

(5.28)delay-time = delay-time× rand(0.5, 1.5)

The other mutation operator is the Delayed Flip Mutation operator, which inverts

the “is-delayed” (or α) binary element of a randomly selected gene as illustrated in

Figure 5.8. Inverting “is-delayed” (or α) makes a delayed job (is-delayed equal to 1)

to be released immediately (is-delayed equal to 0) and vice versa. The last type of

LHS mutation operator is the Delay Swap Mutation, shown in Figure 5.9, which works

similarly to OSM and switches a random gene of the LHS segment with its adjacent gene.

As illustrated in Figure 5.2, each LHS gene simply refers to a job number corresponding
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to the location of the gene in the LHS chromosome. So the Delay Swap Mutation

operator, unlike OSM, can be applied to any gene regardless of its relationship with its

adjacent gene. Delayed Flip Mutation and Delay Swap Mutation operators are applied

by small probabilities of p6 and p7, respectively. It should be mentioned that Figures

5.5 to 5.9 try to fully illustrate how mutation operators work by demonstrating altering

several genes, while in the actual Two-Stage GA model, mutation operators alter only

one arbitrary gene of each randomly selected chromosome.

To summarize, below is the list of the GA operators for the Two-Stage GA for

E/T FJSP with the presence of subassembly and outsourcing:

(a) Modified Single Point Crossover Operator (modified SCO),

(b) Modified Assignment Crossover Operator (modified ACO) for stage 1,

(c) Modified Assignment Crossover Operator (modified ACO) for stage 2,

(d) Assignment Altering Mutation,

(e) Operations Swapping Mutation (OSM),

(f) Delay Change Mutation operator,

(g) Delayed Flip Mutation,

(h) Delay Swap Mutation.
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Table 5.2: Sequence Dependent Setup Time Data for Prototype Problem

Setup Time S∗m,j,o and Sm,j,o,j′,o′

j o m (S∗m,j,o) · · ·(j′, o′, Sm,j,o,j′,o′ ) · · ·
1 1 1 (10) (2,2,20)(2,4,36)(3,1,20)(4,3,24)(5,1,32)(6,1,40)

3 (15) (2,2,40)(2,3,40)(3,1,20)(3,2,20)(3,3,28)(4,2,24)(5,1,24)(6,1,32)
4 (20) (2,3,36)(2,4,36)(3,1,40)(3,2,32)(4,2,20)(4,3,32)(6,1,40)

2 1 (15) (1,4,24)(2,2,20)(2,3,32)(2,4,24)(3,1,36)(4,3,40)(5,1,36)(6,1,36)
3 (10) (1,4,27)(2,2,36)(2,3,28)(2,4,20)(3,1,28)(3,2,24)(3,3,20)(4,2,32)(5,1,32)(6,1,20)
4 (10) (3,1,24)(3,2,20)(4,2,20)(4,3,28)(6,1,40)

3 Outsourced

4 1 (10) (2,2,40)(2,4,20)(3,1,32)(4,3,28)(5,1,20)(6,1,40)
2 (10) (2,2,36)(3,2,28)(3,3,24)(4,3,32)
3 (10) (2,2,28)(2,3,32)(3,1,24)(3,2,40)(3,3,28)(4,2,28)(5,1,36)(6,1,20)

2 1 Outsourced

2 1 (10) (3,1,20)(4,3,28)(5,1,24)(6,1,32)
2 (15) (3,2,40)(3,3,36)(4,3,24)
3 (20) (3,1,20)(3,2,32)(3,3,24)(4,2,28)(5,1,24)(6,1,40)

3 3 (10) (2,2,18)(3,1,32)(3,2,28)(3,3,20)(4,2,36)(5,1,36)(6,1,28)
4 (15) (3,1,36)(3,2,20)(4,2,20)(4,3,36)(6,1,40)

4 1 (15) (2,2,27)(3,1,24)(4,3,28)(5,1,32)(6,1,36)
4 (10) (2,3,18)(3,1,36)(3,2,20)(4,2,24)(4,3,28)(6,1,32

3 1 1 (15) (1,1,32)(1,2,36)(1,4,24)(2,2,24(2,4,24(4,3,20)(5,1,28)(6,1,20

3 (15) (1,1,28)(1,2,20)(1,4,20)(2,2,40)(2,3,36)(4,2,40)(5,1,40)(6,1,36)
4 (15) (1,1,28)(1,2,32)(2,3,24)(2,4,36)(4,2,28)(4,3,36) (6,1,24)

2 2 (20) (1,4,28)(2,2,36)(4,3,20)
3 (15) (1,1,36)(1,2,32)(1,4,24)(2,2,24)(2,3,24)(3,1,15)(4,2,24)(5,1,28)(6,1,32)
4 (10) (1,1,28)(1,2,40)(2,3,36)(2,4,32)(3,1,24)(4,2,32)(4,3,32)(6,1,40)

3 2 (10) (1,4,40)(2,2,28)(3,2,21)(4,3,28)
3 (15) (1,1,40)(1,2,40)(1,4,40)(2,2,28)(2,3,20)(3,1,27)(3,2,15)(4,2,20)(5,1,40)(6,1,20)

4 1 Outsourced

2 3 (10) (1,1,20)(1,2,40)(1,4,36)(2,2,24)(2,3,36)(5,1,28)(6,1,24)
4 (20) (1,1,20)(1,2,36)(2,3,36)(2,4,40)(6,1,20)

3 1 (10) (1,1,20)(1,2,20)(1,4,20)(2,2,36)(2,4,24)(5,1,40)(6,1,20)
2 (10) (1,4,24)(2,2,40)
4 (20) (1,1,20)(1,2,36)(2,3,28)(2,4,36)(4,2,18)(6,1,32)

5 1 1 (20) (1,1,20)(1,2,40)(1,4,24)(2,2,28)(2,4,20)(6,1,20)
3 (15) (1,1,32)(1,2,24)(1,4,20)(2,2,24)(2,3,32)(6,1,24)

2 Outsourced

6 1 1 (15) (1,1,40)(1,2,24)(1,4,24)(2,2,32)(2,4,28)(4,3,32)(5,1,24)
3 (10) (1,1,24)(1,2,40)(1,4,36)(2,2,32)(2,3,28)(4,2,40)(5,1,24)
4 (10) (1,1,40)(1,2,32)(2,3,28)(2,4,28)(4,2,36)(4,3,20)

2 Outsourced
3 Outsourced
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Figure 5.4: Illustration of Modified Assignment Crossover Operator for the Two-Stage
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5.4. Numerical Studies

In this section, we illustrate the performance of the modified Two-Stage GA for E/T

FJSP in the presence of sub-assembly requirements and outsourcing options. First, we

solve the 6 job by 4 machine prototype problem that was described in Section 5.3.1 and

its data was presented in Tables 5.1 and 5.2. This example shows how the model consid-

ers all the constraints and conditions of the example, including the machine capability,

detached or attached setup time, outsourcing, sub-assembly relationship, intentional

delay to meet the due dates, etc.

As reviewed in Section 2.2.3, E/T scheduling objectives of meeting the planned

completion dates (or due dates) to minimize the earliness and tardiness costs are very

popular in both literature and the real world. However, we suspect the original Two-

Stage GA that was introduced in Chapter 3 is not able to minimize earliness and tardi-

ness due to its greedy nature that is very efficient in finding machines that can complete

the jobs as soon as possible to minimize makespan and the total completion time. In

this chapter, we will test this hypothesis and show that the original model, in fact, can-

not minimize earliness and tardiness by solving a set of example problems. Then we

illustrate that adding the intentional delay to the model will solve this issue and enable

the model to minimize earliness and tardiness objectives effectively.

Another feature of this model is eliminating the unrealistic assumption of the clas-

sic FJSP that all the operations are being processed in-house. By solving the prototype

problem, we illustrated how the model handles the outsourcing. We also wanted to

demonstrate how the model can be used as a decision-making tool to check different

outsourcing strategies and what-if scenarios. For example, if the company decides to

outsource more operations to free up internal resources considering that each machine

in FJSP can handle more than one operation. Also, what if the company negotiates

with its vendors to expedite and reduce the lead time. In this section, we also show how

the model can handle the scheduling of more complex products with multilevel BOM by

solving a 100j x 50m problem that has 10 final assemblies that each has sub-assemblies
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up to 10 levels.

5.4.1. Prototype Problem Solution

To illustrate how the proposed model works in solving E/T FJSP, the prototype problem

introduced in section 5.3.1 is solved. As it can be seen in tables 5.1 and 5.2, this problem

has 4 machines and 6 jobs with a total of 19 operations. Six of these operations are

outsourced, and the remaining have either 2 or 3 alternative machines. The in-house

operations have sequence dependent setup in which two are detached and the rest are

attached. As shown in figure 5.1, job 1 and job 3 are final assemblies with 1 and 3

subassemblies, respectively. Only job 1 has a due date of 800.

This problem was solved with the developed Two-Stage GA, and the best-found

solution encoding is shown in figure 5.2-c. The Gantt chart of this solution encoding

is demonstrated in figure 5.10. Also, table 5.3 reports the scheduling results sorted by

jobs, and table 5.4 lists the same result but sorted by machines. The most important

observation is that the model achieved a good and feasible solution that follows all the

constraints of the prototype FJSP. As per solution encoding shown in figure 5.2-c, jobs

5, 2, and 6 are the first jobs that are being processed concurrently. Job 5 starts at time

0 and on machine no.3 and then goes right away for outsourcing. Job 4 starts at 162

right after completion of the job 5, which is its immediate subassembly.

Job 3 has 2 subassemblies which are job 4 (finishing at 409) and job 6 (finishing at

321), so it can start only as early as 409 when both of its subassemblies are completed.

It is interesting to see that the setup of operation no.1 of job 3 is detached and starts

exactly enough ahead of the arrival of the job and is completed right at 409 when job

3 can start. Job 3 has no due date and needs to be completed ASAP, and as we can

see in its longest subassembly path (5 → 4 → 3), no operation is delayed. However,

in the other path (6 → 3), which has some slack (float), we can see that job 6 has an

intentional delay of 123 time units, and it still finishes before job 4. Job 6 has another

interesting feature of two consequent outsourcing processes that the model scheduled

them right after one another as it should.
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On the other hand, job 1 has a due date of 800, and we can easily conclude that

it is a pretty relaxed due date by only looking at the solution table. So the schedule

should dictate some intentional delay to avoid earliness issues. As per the LHS-Segment

of the solution encoding shown in figure 5.2-c, both jobs 1 and 2 have intentional delays,

although not equal. Job 2 starts at 1 with an outsourced operation, and job 1 starts

after completion of job 2 with a delay of 410 to finish right on time at 800. Operation

3 of job 1 is outsourced and completed at 795. However, the subsequent operation,

operation 4, has a detached setup scheduled at 771 to finish at 795 when the job arrives

at the machine. This shows that the model has no issue scheduling the detached setup

even after outsourced operations.

Table 5.4 shows the same schedule but sorted per machine, which proves the solu-

tion also respects the machine-related constraints. Each operation has been assigned to

only one round of any machine, respecting the precedence constraints. Also, we can see

how the two detached setups (j3, o1) and (j1, o4), which both are scheduled on machine

3, were able to start before the arrival of the job since the machine was idle at that

time. The most important observation of this table is how the model schedules several

outsourced operations concurrently. Unlike in-house machines, the outsourcing process

has been set to have no limited capacity, but it still respects the precedence constraints.

The heuristic and metaheuristic algorithms (including 2SGA) cannot guarantee reach-

ing the optimum solution. However, the table 5.5 shows the 2SGA has reached the best

possible objective function of 0 for Total Earliness & Tardiness. Also, the Gantt chart

5.10 shows a pretty fast-tracked schedule for Job 3 that is subjected to minimization of

the Makespan and Total Completion Time objective functions.

5.4.2. E/T Minimization Performance

As mentioned before, the main idea of developing the modified Two-Stage GA was

solving its pragmatic issue of not being able to handle minimizing the earliness/tardiness

by adding the intentional delay. In this section, we like to test the below hypothesizes:

(a) The original 2SGA can minimize makespan and total completion time,
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Figure 5.10: Gantt Chart of the schedule corresponding to the best found solution for
the prototype problem

(b) The original 2SGA is not able to minimize earliness and tardiness,

(c) Adding intentional delay keeps the ability to minimize the makespan and total com-

pletion time,

(d) Adding intentional delay enables the 2SGA model to minimize earliness and tardi-

ness.

In order to do so, we developed a set of 7 examples and solved them under two

conditions of with and without intentional delay. As shown in table 5.6, the problem

sizes vary from 20J x 10M to 50J x 30M , and each has 8 to 15 final assembly jobs. As

described in the mathematical model in Section 5.2, the jobs without due dates have
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Table 5.3: Operation scheduling for Prototype Problem reported by jobs

j o m r ID SB SE/PB/OS PE/OE

1 1 1 3 410 611 647 707
2 4 3 707 727 732
3 O/S 732 795
4 3 4 771 795 800

2 1 O/S 1 1 43
2 1 1 43 53 103
3 3 2 103 139 144
4 1 2 144 171 201

3 1 3 3 0 373 409 437
2 2 2 437 457 490
3 2 3 490 511 533

4 1 O/S 0 162 357
2 4 2 357 377 390
3 2 1 390 400 409

5 1 3 1 0 0 15 54
2 O/S 54 162

6 1 4 1 123 123 133 153
2 O/S 153 279
3 O/S 279 321

ID = Intentional Delay; SB = Setup Begins; SE = Setup Ends; PB = Processing Begins;
OS = Outsourcing starts; PE = Processing Ends; OE = Outsourcing Ends; O/S =
Outsourcing;

two objective functions: makespan and the total completion time. In contrast, the other

jobs with due dates are subjected to the minimization of total earliness and tardiness.

To have a better comparison, we separated the earliness and tardiness values. As it was

expected and table 5.6 shows, the Two-Stage GA cannot minimize the earliness without

intentional delay. After solving the 7 sample problems with no intentional delay, the final

solutions had an average of 603 time units as the total earliness value. In contrast, the

Two-Stage GA with intentional delay ended with 0 earliness for every sample problem

except one with earliness of only 1. This can be easily explained if we note that the
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Table 5.4: Operation scheduling for Prototype Problem reported by machines

m r j o SB SE/PB PE

1 1 2 2 43 53 103
2 2 4 144 171 201
3 1 1 611 647 707

2 1 4 3 390 400 409
2 3 2 437 457 490
3 3 3 490 511 533

3 1 5 1 0 15 54
2 2 3 103 139 144
3 3 1 373 409 437
4 1 4 771 795 800

4 1 6 1 123 133 153
2 4 2 357 377 390
3 1 2 707 727 732

Outsourcing j o DP LT RE

2 1 1 42 43
5 2 54 108 162
6 2 153 126 279
4 1 162 195 357
6 3 279 42 321
1 3 732 63 795

SB = Setup Begins; SE = Setup Ends; PB = Processing Begins; PE = Processing Ends.
DP = Dispatching for outsourcing; LT = Lead Time; RE = Return from Outsourcing.

Table 5.5: Values of the objective function components for Prototype Problem

Objective Term Calculation Value

Makespan Z1 = cmax; ∀(j)| Ej = 0 533

Total Completion Time Z2 =
∑J

j=1 cj,Oj ; ∀(j, o)| Ej = 0 533

Total Earliness & Tardiness Z3 =
∑J

j=1|cj,Oj −Dj |; ∀(j, o)| Ej = 1 0

Weighted Aggregated Obj. Function Z =
∑3

k=1Wk ·Ψk · Zk 357.1

Wk = 1/3&Ψk =
ZIni−max

1

ZIni−max
k
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earliness value means there are some jobs with achievable or relaxed due dates, and the

only thing the scheduling model needs to do is delay them to be released late enough

to be finished on time. This is exactly how intentional delay works, as shown in Figure

5.2.

It is interesting to see that even total tardiness improves significantly with adding

intentional delay. As we can see on average, total tardiness for the Two-Stage GA

without intentional delay is 192 time units while it reduces to 99 time units by adding

intentional delay, which stands for 48% improvement. Tardiness means there are jobs

with unachievable due dates, so unlike earliness, simply delaying the jobs cannot improve

tardiness. However, we should consider delaying some jobs that are not rushed (earliness

issue) will free up resources for other jobs to finish earlier. For example, the tardiness

of sample problem no. 5, which has the highest total earliness of 1307 among all sample

problems, improved by 86% when the intentional delay was added. However, delaying

no-rushed jobs cannot guarantee that rushed jobs will finish on time. For example, the

tardiness of sample problem no.7, which has the second highest total earliness value,

only improved 23% when the intentional delay was added. So it can be concluded that

other factors, like how tight the deadlines are or how many resources these jobs share,

impact the tardiness improvement results.

Another example is sample problem no. 6, which has the least earliness and is

worsened by adding the intentional delay. This means delaying some jobs adds even

more constraints on resources. In conclusion, we can say that intentional delay can

generally improve total tardiness by prioritizing the jobs with a tight deadline over the

jobs that can be delayed. It is obvious the total value of earliness and tardiness will be

improved too. In these sample problems, adding intentional delay, on average, improved

the total earliness and tardiness by 88%.

As was expected, the objective functions of the jobs with no due date mainly

stayed the same. Adding the intentional delay improves makespan for some sample

problems and worsens it for some, but on average, the changes are insignificant (almost

0%). Similar results are recorded for the total completion time, which is the total

192



Chapter 5. Assembly and Outsourcing Extension

completion time of all the jobs without due dates, vs. makespan, which is the longest

completion time. As can be seen, the total completion time for most of the sample

problems worsened slightly when the intentional delay was added, however, it is still

an insignificant value of −1% on average. We should not be surprised that the overall

fitness value (aggregated objective function) was improved in every sample problem due

to a significant improvement in total earliness and tardiness. The aggregated objective

function is improved between 6% to 33% for an average of 21%.

5.4.3. Outsourcing Analysis

As discussed in 2.2.5 and 5.1.3, outsourcing is a common practice in both literature

and real-world job shop manufacturing that we added to this model. We showed how

the modified Two-Stage GA model could schedule outsourced operations by solving the

prototype problem shown in the Gantt chart 5.10. This section will demonstrate how

the model can be used for decision-making or what-if scenario analysis. So we created 7

sample problems with the below characteristics:

(a) Number of machines vary from 5 to 25 for each problem,

(b) Number of jobs vary from 10 to 50 for each problem,

(c) Number of final assembly jobs vary from 3 to 10 for each problem,

(d) Half of the final assemblies of each problem have due dates, and the other half do

not,

(e) Each job has 2 to 4 operations,

(f) Outsourcing processes is 30% of the total operations,

(g) the lead time of outsourced operations is on average 3 times longer than in-house

processing time (outsourcing lead time random generator equation is as same as the

processing time random generator equation only times three),

(h) Every operation has a sequence dependent setup that can be attached or detached.
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Table 5.6: Performance comparison of Two-Stage GA with or without the Intentional Delay

Sample
Problem

Problem
Size

no. of Final
Assemblies

Total
Earliness

Total
Tardiness

no. JxM W.DD1 N.DD2 N.ID3 W.ID4 N.ID3 W.ID4 Imp%5

1 20x10 5 3 425 0 118 115 3%
2 30x15 3 5 781 0 1 1 0%
3 30x15 5 3 235 0 330 29 91%
4 40x20 6 4 185 0 67 1 99%
5 40x20 6 4 1307 0 160 23 86%
6 50x20 5 7 44 0 4 14 -250%
7 50x30 7 8 1245 1 661 508 23%

Average 603 0 192 99 48%

Sample
Problem

Problem
Size

Total
Earliness/Tardiness

Makespan

no. JxM N.ID3 W.ID4 Imp%5 N.ID3 W.ID4 Imp%5

1 20x10 543 115 79% 688 686 0%
2 30x15 782 1 100% 792 792 0%
3 30x15 565 29 95% 489 489 0%
4 40x20 252 1 100% 938 938 0%
5 40x20 1467 23 98% 967 1035 -7%
6 50x20 48 14 71% 1098 980 11%
7 50x30 1917 509 73% 714 759 -6%

Average 796 99 88% 812 811 0%

Sample
Problem

Problem
Size

Total
Completion Time

Aggregated
Obj. Function

no. JxM N.ID3 W.ID4 Imp%5 N.ID3 W.ID4 Imp%5

1 20x10 1283 1346 -5% 1410 1171 17%
2 30x15 2817 2885 -2% 2596 1786 31%
3 30x15 1253 1255 0% 1000 897 10%
4 40x20 2979 3017 -1% 1980 1870 6%
5 40x20 2963 3103 -5% 2793 1873 33%
6 50x20 5674 5497 3% 4009 3702 8%
7 50x30 4220 4399 -4% 4539 3216 29%

Average 3027 3072 -1% 2618 2074 21%

1. W.DD = Final assembly jobs With Due Date;
2. N.DD = Final assembly jobs with No Due Date;
3. N.ID = Two-Stage GA with No Intentional Delay ;
4. W.ID = Two-Stage GA With Intentional Delay ;
5. Imp% = Performance Improvement Percentage ;
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Each of these 7 sample problems was tested under 3 different what-if scenarios

that are listed below:

1. The number of outsourced processes is doubled (another 30% of in-house operations

are outsourced for a total of 60%) with a random lead time of about 3 longer than

in-house processing time,

2. The lead time of the original outsourced processes (30% of total) is expedited to

half of the original lead time,

3. Combination of Scenario1 and Scenario2 that will be 60% outsourced operations

with half lead time (on average 1.5 times longer than in-house operations).

Table 5.7 shows the summary of this experiment, including the size of sample

problems in terms of the number of jobs and machines (JxM) and three objective function

values along with the aggregated objective function for the original problem and the

three what-if scenarios. It also shows how much each objective function has improved

by implementing scenario no.3 compared to the original problem. As it can be seen,

scenario no.1 that is outsourcing more processes which will take much longer than in-

house operations, did not improve any objective functions for any sample problem except

for slight improvement of makespan and total completion time for 15x5 that resulted in

improving the aggregated objective function value for this problem. The worst drop is

for the “Total E/T” of the 50x25 problem that changes from 2 to 406.

The other 2 scenarios, scenario 2 and scenario 3, have improved all objective func-

tions for every sample problem with no exception. Scenario no.2 is just expediting the

currently outsourced processes, and scenario no.3 doubles the number of outsourcing

and expedites them all. Although based on the average value reported in the table 5.7,

scenario2 has a better performance than scenario3, it is interesting to see these two

scenarios more or less improved the objective functions equally. To be more accurate,

scenario3 had slightly better performance in some cases and scenario2 in some. Only

with this amount of information and without going into details of solutions we can con-

clude that this job shop will get the best results from negotiating the lead time with
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its vendor and does not need to outsource any more processes. However, the decision

maker may want to investigate more into the results of the scenario3 and see whether

any specific process should be outsourced. This model can also help run those kinds

(like the second round) of what-if analysis.

We should note that the whole idea of this experiment is to demonstrate the ability

of the model to perform outsourcing what-if scenarios. This is very common in real-world

job shops to outsource the processes that can be done in-house to meet the tight due

date, free up resources for other jobs, or both. For situations with tight due dates, the

job shops may negotiate the expediting option with their vendors, which usually involves

more cost. This model can help the company to forecast the improvement results and to

perform the cost-benefit analysis. We can provide many examples of the job shops that

outsource to free up their resources or for both objectives of meeting the tight deadline

and freeing up the resources. For example, a fabrication shop does not have enough

welders and decides to outsource fabricating of some subassemblies and then complete

them in-house. They also want to negotiate the lead time with the vendor since it will

exceed the expected completion date. This model can help the shop run the what-if

scenario and see the result. The numerical result of different scenarios of the table 5.7

only can be considered as proof of the model’s ability to perform such a what-if analysis.

5.4.4. Subassembly Consideration

This section aims to illustrate how the model handles the subassembly requirement for

more complex products. In order to do so, a sample problem was generated with the

below conditions:

(a) There are 100 jobs and 30 machines,

(b) There are 10 final assembly jobs,

(c) The remaining of 90 jobs are subassemblies distributed in minimum of 5 levels,

(d) 5 of final assemblies have due date and other 5 do not.
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Table 5.7: Model performance for analyzing what-if outsourcing scenarios

Problem
Size

Total
Earliness/Tardiness

Makespan

(JxM) orig. Scn.1 Scn.2 Scn.3 Imp% orig. Scn.1 Scn.2 Scn.3 Imp%

10 x 5 295 396 149 170 42% 529 622 394 369 30%
15 x 5 517 669 299 250 52% 395 384 323 275 30%
15 x 10 412 450 238 207 50% 441 537 269 268 39%
25 x 10 627 999 350 365 42% 583 815 406 460 21%
25 x 15 189 319 115 167 12% 564 857 458 506 10%
50 x 15 1190 2090 426 592 50% 825 1276 646 676 18%
50 x 25 2 406 2 1 75% 856 1183 584 665 22%

Average 462 761 226 250 46% 599 811 440 460 25%

Problem
Size

Total
Completion time

Aggregated
Obj. Function

(JxM) orig. Scn.1 Scn.2 Scn.3 Imp% orig. Scn.1 Scn.2 Scn.3 Imp%

10 x 5 529 622 394 369 30% 502 605 362 329 34%
15 x 5 395 384 323 275 30% 362 322 247 213 41%
15 x 10 866 1291 648 701 19% 691 1147 492 511 26%
25 x 10 1840 2677 1681 1728 6% 1866 2750 1459 1683 10%
25 x 15 1168 1608 890 983 16% 850 1397 692 795 6%
50 x 15 2252 3221 1614 1798 20% 1597 2532 1191 1284 20%
50 x 25 5131 6676 3699 3963 23% 2872 4859 2317 2605 9%

Average 1740 2354 1321 1402 21% 1249 1945 966 1060 21%

Orig.= Original sample problem with outsourcing probability of 30% and outsourcing leadtime
of 3 times longer than in-house processing time;
Scn.1 = Scenario no.1 of doubling the number of outsourced processes;
Scn.2 = Scenario no.2 of expediting the outsourcing leadtime to half of original;
Scn.3 = Combination of Scn.1 and Scn.2, doubling the outsourcing with half leadtime;
Imp% = Improvement percentage Scn.3 compare to the original;
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(e) Each job has 2 to 4 operations (293 operations in total),

(f) Chance of outsourcing is 30% (101 outsourced operations in total),

(g) Each in-house operation has 5 to 7 alternative machines with different process time,

(h) Every operation has a sequence dependent setup that can be attached or detached.

Figures 5.11, 5.12, and 5.13 demonstrate the BOM for this sample problem. In

these figures, each node represents one job with the job number shown as underlined.

“S” stands for the Start of the first operation, which is either starting the outsourcing

process if the first operation is outsourced or starting its setup (attached or detached)

process if it is an in-house operation. At each node, the finish time of the job is also

identified by “F”, which shows the end of processing of the last operation. We should

note that the setup of the first operations of some jobs is detached, so if the machines

are also available, the setup starts before the job arrives at the machine. So in that

case, “S” or the start of the job will be before the finish time or “F” of the subassembly

job. For instance, in figure 5.11 under job no.6, there are 3 jobs (job no. 48, 55 and

98) with “S” less than “F” of their sub assemblies. For example, job no. 48 starts at

the time of 94 while its subassembly, job no. 39, finishes at 104. In these cases, we also

show “B”, which stands for the beginning of the processing of the first operation after

the completion of the setup. This number could never be less than its subassemblies’

greatest “F”. For the rest of this section, we will refer to this as “the basic rule of

subassembly relationship”.

We checked the solution, and all 100 jobs follow this basic rule of subassembly

relationship. For example, we can look at job numbers 6, 73, and 7 shown in figure

5.11. In these 3 jobs, each job has only one subassembly, and the “S” (or “B”) of

each job is exactly the same as the “F” time of its only subassembly. These jobs (job

numbers 6, 73) demonstrate how the model schedules the jobs with no due date. For

instance, subassemblies of job numbers 6 and 73, which are subject to the minimization

of makespan and total completion time, are being completed one after another with no

delay. Also, it is interesting to see job no. 7 with a tight due date is scheduled the same
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way that each job starts right after its subassembly to finish by the due date. However,

as shown, it still finished later than its due date (1307 vs. 1154).

In the same figure, figure 5.11, job no.75 is also interesting to describe. It shows

the application of the basic rule of subassembly relationship for the jobs with two sub-

assemblies. As we can see, job no. 11 has two subassemblies, J71 with a finish time

of 170 and J86 with a finish time of 180. So job no.11 can only start as early as 180,

and it did. Job no.11 itself is a subassembly of job 32 along with job no.82. Job no.11

finishes at 580 and job no.82 at 581. Since their final assembly, job no.75, has no due

date, job no.32 is expected to start at 581, but it is delayed for 3 time units (to 584).

After checking the solution details, it appeared that it was due to the availability of the

machine or, as it is called, the resource conflict. In this case, the machine no.22 is busy

with operation no.2 of job no.54 from 568 to 584 time unit and only becomes available

at 584 for accepting operation no.1 of job no.32.

To understand how the model schedules the jobs with relaxed due dates, we can

look at job no.J53 and J70 shown in figure 5.11. Checking the start and finish times of

each of their subassemblies shows that the model intentionally delays each subassembly

unevenly to finish the job on time. In these two examples, the immediate child of the

final assembly has been delayed much longer than other subassemblies (e.g., for the job

no. 78, it is more than 640 units). Some other subassemblies are delayed too, but not

that much. This is different in job no.91 and job no.57 shown in figure 5.12 that all

the required intentional delay is applied on one subassembly, job no.46 and job no.66

respectively, and no other subassembly. These two jobs also have several examples of

applying the basic rule of subassembly relationship in jobs with more than one immediate

subassembly.

The scheduling of job no. 61 shown in figure 5.13 also demonstrates an interesting

aspect of this model. Job no. 61 has no due date, so it should finish as soon as possible.

However, in the schedule of two of its three subassemblies, there are several jobs with a

delayed start. For example, job no.34 starts at 264 while its subassemblies are finished by

167. Similarly, job no. 18 and 24 themselves are not starting as soon as their immediate
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subassemblies finish. To explain the logic, we should note that the longest production

path among immediate children of job no.61 is job no. 29 that has no delay between

any of its subassemblies. This shows how the model follows the critical path concept

and uses the slack (float) of jobs. Another example of using the job slack can be seen

in J9 in the same figure, figure 5.13, where job no.27 is delayed since the next job, job

no.38, is waiting for its other subassembly that is the job no. 64.
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Note: Each node shows the job number,“S” or start time and “F” or finish time of the job,

if setup of the first operation is detached and starts before the job arrival,

the node also includes “B” or beginning of the first operation.

Figure 5.11: Subassembly consideration by the model-(a)
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if setup of the first operation is detached and starts before the job arrival,

the node also includes “B” or beginning of the first operation.

Figure 5.12: Subassembly consideration by the model-(b)
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Figure 5.13: Subassembly consideration by the model-(c)
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5.5. Discussion and Conclusion

Real-world job shops often receive orders with the requested completion time. This can

be due to the increasing competitiveness level of the manufacturing world that forces

industries to cut down all unnecessary costs, including the cost of inventory, which

has led to the Just In Time concept. It is evident that scheduling plays the primary

role in achieving the JIT goal. Hence, scheduling models with the objective of on-time

completion or its equivalent of minimizing earliness and tardiness are very common.

Per some reviews, minimizing tardiness is the second most common objective function

after makespan. In Chapter 4, we illustrated that the Two Stage GA for FJSP is very

efficient in optimizing a wide variety of objectives. However, in this chapter, we showed

that the Two-Stage GA is not capable of handling earliness and tardiness objectives, and

adding the intentional delay will solve this issue. The proposed genetic algorithm in this

chapter has an additional LHS segment that determines the intentional delay of each

job. A number of GA operators have also been modified or developed to accommodate

these intentional delay gens in LHS with α and β.

In addition to the intentional delay, we added subassembly requirements and out-

sourcing considerations to the modified Two-Stage GA. These are two other realistic

features that the regular GA for FJSPs are not considering. Outsourcing is based on

the fact that many job shops rely on outsourcing processes since they either have no

in-house capability or do not have enough capacity. In this model, each job can have

multiple outsourced operations anywhere in the routing sequence. Another feature is

subassembly consideration which defines the relationship between jobs. Any job can

have multiple subassemblies in different levels that must be completed before the higher

level job in the BOM can start. This adds another critical pragmatic capability missing

from regular GAs for FJSP, which assumes no relationship between jobs exists. Adding

all these features aims to make a more practical scheduling algorithm for real-world

FJSPs.

In this chapter, we first developed the mathematical (MILP) model of the E/T
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FJSP in the presence of outsourcing and subassembly requirements. Then we described

the modified Two-Stage GA model and the GA operators to address this problem.

Finally, to demonstrate how the model works and to prove its capacities, we created and

solved several numerical problems as listed below:

(a) A prototype problem with 6 jobs and 4 machines,

(b) 7 examples with 20 to 50 jobs (8 to 15 final assemblies) and 10 to 30 machines to

test E/T minimization performance,

(c) 7 examples with 10 to 50 jobs (3 to 10 final assemblies) and 5 to 25 machines for

outsourcing analysis,

(d) A bigger size problem with 100 jobs (10 final assembly and 90 subassemblies) and

30 machines for testing subassembly consideration.

All the above sample problems are FJSPs with outsourcing, sequence-dependent

setup, and subassembly requirement, which some of the final assemblies have due dates.

Below is the list of observations and conclusions that were made by solving the

numerical examples:

• The original 2SGA is not able to minimize earliness and tardiness efficiently,

• Adding intentional delay enables the 2SGA model to minimize the earliness and

tardiness while maintaining the ability to minimize makespan and total completion

time,

• The model generates feasible solutions with respecting FJSP regular constraints,

outsourcing and subassembly requirements,

• The model reaches good solutions (in most cases, earliness is zero),

• Jobs can have multi outsourced processes (consequently or separate) and can start

or end with outsourced processes and still the model schedules them properly,

• The outsourced processes can be scheduled concurrently due to no limitation of

the outsourcing,
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• The model respects sequence-dependent setup and its nature (detached or at-

tached) even if they fall before or after outsourced processes,

• The model can be used for analyzing what-if scenarios like the impact of different

outsourcing strategies on objective functions,

• We concluded that the model can easily handle multilevel subassembly problems,

• The model uses the slack (float) of the jobs not on the subassembly critical path.
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Conclusion and Future Research

6.1. Summary and Conclusion

The systematic approach toward scheduling has been around for more than half a cen-

tury, but it was only in 1990 that the basic FJSP was introduced as an extension to

JSP. As we reviewed in chapters 1 and 2, researchers utilized several heuristic and meta-

heuristic algorithms to solve JSP and FJSP due to their level of complexity and the fact

they are classified as NP-hard. Among all these heuristic and meta-heuristic algorithms,

the Genetic Algorithm is by far the most common solution approach used to address

FJSP. Although GA and other mata heuristic algorithms made it possible to solve com-

plex FJSPs, still the existing FJSP scheduling studies have assumed several simplifying

conditions to FJPS in order to be modeled and solved. These assumptions are mainly

impractical deviations from the real-world job shop manufacturing condition that makes

these studies (as complex and advanced as they are) far from real-world schedulings.

As described in Section 1.4, this gap was also the primary motivating factor for

the Ph.D. student that witnessed during his almost 20 years of experience. We noticed

that job shop principles are the fundamental concept of many manufacturing companies,

and lacking a good systematic approach for scheduling is one common issue even though

many of these companies have implemented advanced ERP systems. So in this thesis,

first, we tried to improve the performance of the GA for solving FJSP by introducing an
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efficient Two-Stage GA. Then we removed several impractical assumptions in order to

make the model closer to the real-world FJSPs. To lessen the gap between the theory

and reality even further, we also developed multi-objective scheduling models for FJSP

that cover a wide variety of different common objectives. The result of this research

is published in one conference proceeding (Rooyani and Defersha (2019)) and in two

academic journals (Defersha and Rooyani (2020), and Rooyani and Defersha (2022)).

We also have another paper at the final drafting stage about Two-Stage GA for E/T

scheduling at subassembly and outsourcing presence.

6.1.1. Contribution - Two-Stage GA

Chapter 3 describes the novel Two-Stage GA for FJSP, with the first stage being different

from the regular GA approach. The first stage has a unique solution encoding that only

determines the operation sequence for assignment and then uses a greedy approach

to find the machine with the quickest completion time for each operation. This stage

provides a very high-quality solution population that will be used as an initial population

for the second stage. The second stage follows the common GA approach for FJSP which

the GA dictates both sequencing and machine assignment. This stage explores the areas

of the solution space that might have been missed due to the greedy nature of the first

stage to reduce the chance of the GA falling in the local optimum.

In Chapter 3, we initially applied the Two-Stage GA on the basic FJSP and pre-

sented its result in 9th IFAC Conference on Manufacturing Modelling, Management

and Control in 2019 at Berlin, Germany that, later published at Rooyani and Defersha

(2019). In that paper, we introduced the concept and solved several benchmark problems

along with generated sample problems. We illustrated that the Two-Stage GA not only

outperforms the Regular GA but also outperforms several other solution methodologies.

Since the main strength of the GA (and subsequently 2SGA) is solving the larger

size and more complex problems, we applied the Two-Stage GA on a more comprehen-

sive FJSP with sequence dependent attached/detached setup, machine release date, and

operation lag time. The result is published at Defersha and Rooyani (2020). Similar

207



Chapter 6. Conclusion and Future Research

to the other paper, we tested the proposed algorithm by solving many benchmarks and

randomly generated large-size problems. In this research, we demonstrated that the

superiority of the Two-Stage GA is better recognized with more complex and compre-

hensive FJSPs. Hence, we concluded that the proposed algorithm is a viable choice

for solving practical and real-world problems. We also applied parallel computation on

Two-Stage GA, which improved its performance even further. However, the more inter-

esting result we found was that the sequential version of the proposed algorithm (using

a single CPU) outperformed a parallel implementation of the regular GA that uses 48

CPUs. This work has gained the research’s attention, and Defersha and Rooyani (2020)

paper has already been cited by about 40 studies, in addition to about 15 citations for

Rooyani and Defersha (2019). Even Lei et al. (2022) referred to the Two-Stage GA as a

“state-of-the-art meta-heuristic algorithm” and compared their algorithm performance

with ours. They concluded that the Two-Stage GA surpasses their algorithm in terms

of the quality of the solutions, but theirs is faster.

In addition to what we discussed in sections 3.1 and 3.5, the following is the

summary of the contribution and conclusion that were made based on the results of

these two studies:

(a) The Two-Stage GA is a very novel idea and a promising concept we developed

through this research which has already attracted the attention of several scholars,

(b) The Two-Stage GA is based on a systematically designed solution representation

and a greedy decoding mechanism of the first stage,

(c) The first stage creates a high-quality initial population for the second stage. The

quality of this initial population is much better than those created by some other

specialized initialization techniques from the literature,

(d) The Two-Stage GA is able to solve a wide range of FJSPs, from benchmark problems

to fairly large-size sample problems,

(e) The Two-Stage GA is outperforming regular GA, specifically when the size and
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complexity of the FJSP increases,

(f) Parallelization will improve the performance of Two-Stage GA, but even a sequential

Two-Stage GA outperforms parallel regular GA.

6.1.2. Contribution - Multi-Objective Lot Streaming

As we discussed, the Two-Stage GA proved to be a good and effective approach for

solving FJSPs, specifically with increasing the size and complexity of the problem. So

in Chapter 4, we applied the Two-Stage GA to solve FJSPs that, in addition to the

sequence dependent attached or detached setup, machine release date, and operation

lag time, incorporates lot streaming and multiple objective functions. Lot streaming

splits a production lot of a job into several independent sublots. Hence it enables the

scheduling systems to 1) move the sublots from one machine to the next without waiting

for the other sublots and 2) simultaneously process sublots of a given job on multiple

machines. Therefore, lot streaming significantly reduces the completion time of the job,

and as reviewed in Chapter 2, it is a very popular strategy for time-based competition in

today’s global market as well as in the literature. For instance, it has been adopted by

Lean Manufacturing which usually refers to it as “one (or single) piece flow” in contrast

with “batch production” as a tool to improve efficiency. Hence we wanted to show how

the Two-Stage GA can handle the FJSP with lot streaming.

Another contribution of this chapter is incorporating 10 objective functions in

FJSP. It is very rare to impossible to find a scheduling system with a single objective in

the real world. However, the majority of scheduling studies in the literature considered

only a single objective function, mainly makespan. With the ultimate goal of lessening

the gap between the theory and practice of the FJSP schedule in mind, in this study,

we wanted to incorporate multi-objectives FJSP within Two-Stage GA as well. The 10

objective functions we have considered are the minimization of (1) makespan, (2) maxi-

mum sublot flowtime, (3) total sublot flowtime, (4) maximum job flowtime, (5) total job
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flowtime, (6) maximum sublot finish-time separation, (7) total sublot finish-time sepa-

ration, (8) maximum machine load, (9) total machine load, and (10) maximum machine

load difference. Also, this study provides several numerical studies that demonstrate

the importance of multi-objective optimization, specifically in large-size problems. The

result of this research is published in Rooyani and Defersha (2022).

Here is the summary of the conclusion and contributions of this study that has

been already described in Sections 4.1 and 4.5:

(a) The Two-Stage GA is very capable of handling more complex FJSPs that, in addi-

tion to sequence dependent attached or detached setup, machine release date, and

operation lag time, include lot streaming,

(b) The Two-Stage GA can jointly optimize multi-objective FJSPs,

(c) The first stage generates solutions that are highly improved in all of the ten objective

function terms,

(d) The numerical examples prove the greater need for multi-objective optimization in

larger problems due to their interactions and tradeoff. This emphasizes the fact that

the single objective scheduling algorithms are not suitable for real industrial systems

that need to optimize several objectives at the same time,

(e) There is a need for some newly proposed objective functions. For example, workload

balancing in FJSP may not be fully achieved by minimizing the maximum or the

total workload or both, and the newly proposed objective of minimizing the maxi-

mum workload difference can result in a better workload balance when considered

along with the minimization of the maximum and/or the total workload,

(f) Similarly, minimizing the maximum sublot finish-time separation and total sublot

finish-time separation can decrease work-in-process inventory with minimal impact

on sublot and job flowtime,

(g) The Two-Stage GA is outperforming regular GA in both convergence speed and

final solution quality in solving the multi-objective FJSP lot streaming,
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(h) Parallel computation improves the performance of the Two-Stage Genetic Algorithm

further,

(i) A sequential Two-Stage GA is outperforming parallel regular GA,

(j) Among different selection GA operators, tournament selection with the smaller size

of tournament outperforms proportional and linear ranking selection operators,

(k) Analysis of variance shows there is no interaction between mutation and crossover

probabilities, and they can be defined separately.

6.1.3. Contribution - E/T Schedule with Assembly and Out-

sourcing

Chapter 4 illustrated that the Two-Stage GA could efficiently solve comprehensive FJSPs

with a wide range of objectives from makespan and flowtime to machine load maximiza-

tion. However, in Chapter 5, we demonstrated that the Two-Stage GA is not able to

address Earliness/Tardiness objectives. It was not a surprise since the core idea of the

Two-Stage GA is adding a greedy mechanism that assigns the machine with the shortest

completion time to each operation. This is a pragmatic issue for 2SGA since usually

some of the orders that job shops receive have requested completion time or due dates

with some sort of penalties or costs (either internally like inventory cost or storage fee

or externally like late charges or liquidated damages). In order to address this issue, we

modified the Two-Stage GA solution encoding (added an LHS segment to the encoding

chromosome) and GA operators to accommodate the intentional delay. The intentional

delay enables the algorithm to release the jobs only during a specific time window and

makes it possible to finish the job on time and not early. As a result, the model can

have several jobs with due dates, while the rest of the orders should be finished ASAP.

The outsourcing capability and assembly requirement are the two other contribu-

tions of the FJSP model of Chapter 5, in addition to modifying the original Two-Stage

GA to accommodate intentional delay and minimization of Earliness/Tardiness. As dis-

cussed in Chapter 2, in order to simplify the modeling process, the classic FJSPs assume
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all operations are done in-house, and there is no relationship between the jobs. How-

ever, these conditions are the opposite of real-world job shop situations. Hence in this

model, the jobs can have some outsourced operations at any step of their routing while

their other operations have several capable machines. Also, the model allows the jobs to

have several sub-assemblies on multiple levels. This chapter provides several randomly

generated problems of different sizes with outsourcing, subassemblies, and due dates to

demonstrate the performance of the modified Two-Stage GA. We are in the final stage

of drafting the paper to publish the results of this chapter.

In addition to sections 5.1 and 5.5 describing the contribution and conclusion of

this model in detail, we also provide a summary here:

(a) The original Two-Stage GA is not able to minimize earliness and tardiness objective

functions, but adding the intentional delay solves this issue,

(b) The modified Two-Stage GA generates feasible and good solutions with respecting

FJSP regular constraints, outsourcing and subassembly requirements, and in most

cases zero earliness,

(c) The model allows the jobs to have several outsourced processes (consequently or

separate) at any stage of routing (including the first and the last operation). Fur-

thermore, at any point, we can have several operations under outsourcing processing

(no capacity limit),

(d) The jobs also can have several subassemblies in multi-levels,

(e) The model can be used for analyzing what-if scenarios like the impact of different

outsourcing strategies on objective functions.

6.2. Future Research

Research in the Flexible job shop scheduling field, and generally in the scheduling field,

have many opportunities to be more practical. In this section, we recommend Dynamic

FJSP scheduling and Multi-Resource Scheduling as immediate future research fields and

Meta Scheduling and Industry 4.0 as a more long-term expansion for applying Two-Stage

212



Chapter 6. Conclusion and Future Research

GA.

6.2.1. Dynamic Scheduling

This study, similar to the majority of scheduling studies, has assumed the scheduling

takes place in a static production environment, where 1) the shop floor information is

known in advance, and 2) the deterministic scheduling scheme will not be changed dur-

ing the entire planning horizon. The fact that most scheduling algorithms have only

assumed static conditions is a major limitation of scheduling literature. Since manufac-

turing systems operate in dynamic environments where frequent real-time events occur

and make a previously feasible schedule obsolete. Shen et al. (2014) categorizes all

the scheduling disruptions that can outdate near-optimal schedules generated by classic

(static) approaches into data uncertainties and real-time disruptive events. Baykasoğlu

and Karaslan (2017) have listed five types of real-time disruptive events for a job shop

scheduling as “new order arrivals”, “machine breakdowns”, “arrival of urgent orders”,

“changes of the due dates”, and “order cancellation”. Hence there is a need for algo-

rithms that reflect these real-life scheduling situations.

This newer type of scheduling algorithm is called dynamic scheduling and takes

into consideration some of those data uncertainties and real-time disruptive events. We

can see an increasing number of scholars paying attention to Dynamic Flexible Job Shop

Scheduling (DFJSP) that can respond to the unexpected events of the flexible job shop in

real-time. Shen et al. (2014) listed “shop efficiency”, “schedule robustness”, and “system

stability” as the typical objectives of the existing dynamic scheduling studies. Hence,

extending Two-Stage GA’s application to address comprehensive FJSP in a dynamic

situation can be an immediate future research field.

6.2.2. Multi-Resource Scheduling

In this research, similar to most FJSP studies, we assumed that machines were the only

limited resources needed to be considered in the scheduling system. In other words, the

classic FJSP assumes that the next assigned operation can start as soon as the machine is
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available, which is not a good reflection of real-world job shop conditions. The operators

are the most essential resource type missing in the classic FJSP since, usually, in real

job shops, there is not one operator per machine. The majority of job shops have highly

skilled operators who can run several machines, so the scheduling system needs to assure

the operator who can run the machine is also available to start the next operation.

Operators are not the only type of missing resources in the FJSP scheduling, as we can

name setup technicians, jig and fixtures, special tools, or material handling devices as

some other examples of shared resources in the job shop environment that are needed

to be available before an operation can start. Another interesting example of shared

resources is studied by Singh and Weiskircher (2011) in some coal mines in a remote off-

grid region that rely on one power plant that can produce limited electricity. Resources

can be categorized into two types of renewable resources like labour and nonrenewable

resources like fuel or perishable tools (Liu et al. (2018)). We believe applying the Two-

Stage GA to solve multi-resource scheduling, at minimum dual resources of machines and

operators, can be a fruitful future research field that makes the model more practical.

6.2.3. Industry 4.0

Industry 4.0, or the Fourth Industrial Revolution, also called the “smart factory” con-

ceptualizes the integration of advanced technologies such as the Internet of Things, big

data, and Artificial Intelligence (AI) with enterprise resource planning, process control

management, and production technologies. Scheduling, as the core of enterprise resource

planning and manufacturing management systems, has a crucial role in improving pro-

ductivity and resource utilization in a manufacturing factory in the era of Industry 4.0

(Chang et al. (2022)). We believe GA, and consequently, Two-Stage GA can provide a

good and practical solution methodology for solving more complicated scheduling prob-

lems in a complex manufacturing system with integrated advanced technology.
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6.2.4. Meta-Scheduling

This study proposes an effective solution for the comprehensive multi-objective flexi-

ble job shop scheduling problem. The“ job shop” is a specific and defined production

framework that the FJSP tries to address. Similarly, most scheduling algorithms in the

literature are frameworks specific such as a single machine shop, parallel machines shop,

flexible flow shop, flexible job shop, and cellular manufacturing. This fact that most

algorithms are framework specific such as job-shop or flow-shop, which rarely match

real manufacturing systems, is a major problem in translating scheduling algorithms

into practical solutions for industries (Mej́ıa et al. (2012)). Since most manufacturing

companies utilize a combination of different manufacturing systems, it is rare to find a

manufacturing plant that follows a single platform perfectly.

Although many researchers have recognized the benefit of system-independent

scheduling tools, only a few published attempts exist. For example, Davis and Fox (1994)

and McIlhagga (2005) made initial attempts to develop system-independent scheduling

frameworks, but both fell short in terms of the generality and flexibility of the frame-

works they propose. Smith and Becker (1997) and Metaxiotis et al. (2001) created

unified scheduling ontologies, but the ontologies are not well suited for straightforward

problem representation and solution encoding. A scheduling methodology that can be

used across domains (job shop, traveling salesman, vehicle routing) was patented and

presented in Montana (2002). However, the approach lacks depth in each domain and

cannot address the challenges of today’s complex manufacturing systems. Framinan

et al. (2014) provided guidelines and architecture for unified scheduling tools. How-

ever, the authors provided broad-brush approaches to the problem that lacks specific

algorithm development.

So it is crucial to develop a generalized framework and algorithm, called meta-

scheduling, that can schedule a wide range of manufacturing systems without altering

its internal code. Such a generalized meta-scheduling algorithm can be more usable

in practical settings as it will enable the manufacturing system scheduler to use the

same scheduling tool in a variety of scenarios. Such a system will allow ERP developers
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to incorporate detailed scheduling functionalities in their software. Hence it enables

industries to acquire automated scheduling tools without the need to develop expensive

customized algorithms.

We believe the core concept of Two-Stage GA which is adding a greedy approach to

find better solutions in the first stage of the GA to create a high-quality initial population

for the second stage can be utilized to handle a wide range of discrete manufacturing

systems with greater operational complexity.
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Liji Shen, Stéphane Dauzère-Pérès, and Janis S. Neufeld. Solving the flexible job shop

scheduling problem with sequence-dependent setup times. European Journal of Oper-

ational Research, 265(2):503–516, 2018. ISSN 03772217. doi: 10.1016/j.ejor.2017.08.

021.

X. Shen, M. Zhang, and J. Fu. Multi-Objective dynamic job shop scheduling: A survey

and prospects. International Journal of Innovative Computing, Information and Con-

trol, 10(6):2113–2126, 2014. URL http://www.ijicic.org/ijicic-14-01022.pdf.

Xiao Qiu Shi, Wei Long, Yan Yan Li, Yong Lai Wei, and Ding Shan Deng. Different Per-

formances of Different Intelligent Algorithms for Solving FJSP: A Perspective of Struc-

ture. Computational Intelligence and Neuroscience, 2018(doi:10.1155/2018/4617816),

2018. ISSN 16875273. doi: 10.1155/2018/4617816.

Gaurav Singh and Rene Weiskircher. A multi-agent system for decentralised fractional

shared resource constraint scheduling. Web Intelligence and Agent Systems: An Inter-

national Journal, 9(2):99–108, 2011. ISSN 15701263. doi: 10.3233/WIA-2011-0208.

URL https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.

3233/WIA-2011-0208.

Stephen Smith and Marcel Becker. An Ontology for Constructing Scheduling Systems.

In Proceedings of AAAI ’97 Spring Symposium on Ontological Engineering, pages 120

– 129. AAAI Press, 1997. URL https://www.aaai.org/Papers/Symposia/Spring/

1997/SS-97-06/SS97-06-016.pdf.

Saisumpan Sooncharoen, Pupong Pongcharoen, and Christian Hicks. Grey Wolf pro-

duction scheduling for the capital goods industry. Applied Soft Computing, 94:

106480, sep 2020. ISSN 15684946. doi: 10.1016/j.asoc.2020.106480. URL https:

//linkinghub.elsevier.com/retrieve/pii/S1568494620304191.

Junpeng Su, Han Huang, Gang Li, Xueqiang Li, and Zhifeng Hao. Self-Organizing

Neural Scheduler for the Flexible Job Shop Problem With Periodic Maintenance

and Mandatory Outsourcing Constraints. IEEE Transactions on Cybernetics, pages

244

http://www.ijicic.org/ijicic-14-01022.pdf
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/WIA-2011-0208
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/WIA-2011-0208
https://www.aaai.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-016.pdf
https://www.aaai.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-016.pdf
https://linkinghub.elsevier.com/retrieve/pii/S1568494620304191
https://linkinghub.elsevier.com/retrieve/pii/S1568494620304191


Bibliography

1–12, 2022. ISSN 2168-2267. doi: 10.1109/TCYB.2022.3158334. URL https:

//ieeexplore.ieee.org/document/9750014/.

Jinghe Sun, Guohui Zhang, Jiao Lu, and Wenqiang Zhang. A hybrid many-objective

evolutionary algorithm for flexible job-shop scheduling problem with transportation

and setup times. Computers and Operations Research, 132:105263, aug 2021. ISSN

03050548. doi: 10.1016/j.cor.2021.105263. URL https://linkinghub.elsevier.

com/retrieve/pii/S0305054821000551.

Wei Sun, Ying Pan, Xiaohong Lu, and Qinyi Ma. Research on flexible job-shop

scheduling problem based on a modified genetic algorithm. Journal of Mechanical

Science and Technology, 24(10):2119–2125, 2010. ISSN 1738494X. doi: 10.1007/

s12206-010-0526-x.

A Tamilarasi and T Anantha kumar. An enhanced genetic algorithm with simulated

annealing for job-shop scheduling. International Journal of Engineering, Science and

Technology, 2(1):144–151, 2010. ISSN 2141-2820. doi: 10.4314/ijest.v2i1.59105.

Jianchao Tang, Guoji Zhang, Binbin Lin, and Bixi Zhang. A hybrid algorithm for

flexible job-shop scheduling problem. Procedia Engineering, 15:3678–3683, 2011. ISSN

18777058. doi: 10.1016/j.proeng.2011.08.689. URL https://linkinghub.elsevier.

com/retrieve/pii/S1877705811021904.

Charles E. Taylor. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex

Adaptive Systems. John H. Holland , volume 69. University of Michigan Press, Ann

Arbor, MI, 1994. doi: 10.1086/418447.

Wannaporn Teekeng and Arit Thammano. Modified genetic algorithm for flexible job-

shop scheduling problems. Procedia Computer Science, 12:122–128, 2012. ISSN

18770509. doi: 10.1016/j.procs.2012.09.041.

H. Tsubone, M. Ohba, and T. Uetake. The impact of lot sizing and sequencing on

245

https://ieeexplore.ieee.org/document/9750014/
https://ieeexplore.ieee.org/document/9750014/
https://linkinghub.elsevier.com/retrieve/pii/S0305054821000551
https://linkinghub.elsevier.com/retrieve/pii/S0305054821000551
https://linkinghub.elsevier.com/retrieve/pii/S1877705811021904
https://linkinghub.elsevier.com/retrieve/pii/S1877705811021904


Bibliography

manufacturing performance in a two-stage hybrid flow shop. International Jour-

nal of Production Research, 34(11):3037–3053, nov 1996. ISSN 1366588X. doi: 10.

1080/00207549608905076. URL http://www.tandfonline.com/doi/abs/10.1080/

00207549608905076.
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