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Table 1 shows a comparison of results from LINGO optimization software, SGA and a 16-

processor island-model PGA. The genetic algorithms were run for 25 repetitions by varying

the genetic parameters defined and explained in Defersha and Chen (2006b). The first five

test runs were used as the basis of the comparison shown in Table 1. Under test 1, it can be

seen that the solution found in 5 minutes using SAG and in just 30 seconds using PGA were

better the solution found in more than 25 hours using LINGO. Under tests 1, 2, 4, and 5, the

solutions found in 1 minute using PGA were better than those found in more than 1 hour using

SGA. In test 3, the PGA took only 3 minutes to find a better solution than that found in more

than 11
2

hours using SGA. In Figure 7, we further demonstrate the performance improvement

achieved through parallelization by varying the number of processors. In Figures 7-a and 7-b

are the convergence graphs from SGA and from the 16-processor PGA for the 25 repetitions.

Figure 7-c shows the average convergence for these repetitions as we increase the number of

processors. In Figure 7-a, we can see that there are several test repetitions that the SGA did not

perform very well. From Figure 7-b, it is possible to see that the results from the 16-processor

PGA converge very well for almost all of the genetic parameter settings. Figure 7-c shows

that the average convergence curve improves as we increase the number of processors used in

the computation. From these observations, it is quite clear that the parallel genetic algorithm

is by far more efficient and robust than sequential implementation in solving the dynamic cell

formation model.

5.2 Topology, Migration and Convergence

As discussed in the previous section, performance of the island model PGA is affected by

connection topology, migration policy, migration frequency, and migration rate. We present an

empirical study on the impact of these parameters on the convergence of island PGA approach

in solving the dynamic cell formation problem.

5.2.1 Topology

Intuitively, if a topology is densely connected, good solutions will spread fast to the subpop-

ulations and may quickly take over the population. On the other hand, if the topology is sparsely

connected, the subpopulations will be more isolated from each other and the full advantage of

parallel computing may not be achieved. Figure 8 shows the convergence graphs of several

island model PGAs with different connection topologies. Each curve represents an average

convergence from 25 repetitions using different settings of genetic parameters and a particular

connection topology. From this figure it can be seen that the randomly connected topology with

ρ = 0.5 outperforms the other topologies. The parameter ρ devised in this research controls the

17
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Figure 7: Convergence graphs of SGA and PGA using different number processors

density of the connectivity of the subpopulations. Lower values of ρ result in loosely connected

topologies while higher values result in densely connected topology. Looking into Figure 8, it

can be seen that the convergence graph of the randomly connected topology with ρ = 0.2 closely

approximates that of the unidirectional ring which is the most sparse topology. With ρ = 0.8,

it closely approximates that of the fully connected topology. Thus, the randomly connected

topology with its control parameter ρ can alleviate the difficult problem of choosing a suitable

topology out of several known topologies. Moreover, this topology has a randomness behavior

which may be compatible with the random nature of genetic algorithm search processes.

5.2.2 Migration Policy

The migration policy determines which individuals migrate from the source subpopulation

and which are replaced by migrants in the destination subpopulation. In this empirical study

we consider three different migration policies: (1) random-replace-random, (2) best-replace-

18
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Figure 8: Average convergence graphs of 12-processor island model PGAs with different con-
nection topologies

random, and (3) best-replace-worst. Figure 9 shows the convergence graphs of an island-model

PGA for 12 repetitions using different genetic parameter settings and the three different mi-

gration policies. From these convergence graphs it can be seen that the island-model PGA is

less robust to the genetic parameter settings when employing the first migration policy than the

latter two policies. This can be seen from the fact that the individual convergence curves for

the 12 repetitions in Figures 9-a are less alike to each other compared to those shown in Figures

9-b and 9-c. From Figure 9-d, we can see that the best-replace-worst migration policy slightly

outperforms the other two migration policies. Hence, it may be considered as the first choice of

migration policy in solving the dynamic cell formation model presented in Section 2.

5.2.3 Migration Frequency

This parameter of island-model PGA determines how often migrations occur. It is equal to

the number of generations elapsed between each communication epoch. In this empirical study,

we consider several settings of the migration frequency (MF) as shown in Figure 10. Each curve

represents the average convergence for 12 repetitions using different genetic parameter settings

and a particular MF value. As it can be seen from this figure, the average convergence graphs

are similar for a wide range of migration frequencies from 60 to 2000. It can also be seen that

for very small or very lager MF values, e.g., MF = 15 or 10000, the convergence behavior is

very poor. This is understandable since with very small MF, relatively better solutions may

spread quickly to other subpopulations and lead to premature convergence. As for very large
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Figure 9: Convergence graphs of a 12-processor island model PGA using different migrant
policies

MF, the subpopulations will be too isolated to achieve the full advantage of parallel comput-

ing. Migration frequencies close to 300 generations can be recommended for solving problems

presented in Section 2.

5.2.4 Migration Rate

The migration rate (MR) controls how many individuals migrate from each subpopulation to

their respective destination subpopulations. In this empirical study, we consider several settings

of MR from 2 to 40. When MR=2, the number of migrants received by each subpopulation in

the fully connected 12-processor topology equals to 22 (2 × 11). When MR=40, this number

is 440. In Figure 11-a, each curve represents an average convergence graph for 12 repetitions

using different genetic parameter settings and a particular MF value. From this figure, it can be

seen that the island model PGA converges to almost identical values of the objective function for
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a wide rang of MR. Figure 11-b shows the average final solution quality obtained for different

values of MR. It can be seen that the solution quality varies without a clear trend as the migration

rate is increased. These results show that the island model PGA is less sensitive to the migration

rate in solving the dynamic cell formation problem presented in Section 2.

1.7575

1.7600

1.7625

1.7650

1.7675

1.7700

0 100 200 300 400 500 600 700

O
b

je
ct

iv
e 

(i
n

 m
ill

io
n

s)

Generation (in hundreds)

1.7575

1.7600

1.7625

1.7650

1.7675

1.7700

M
R

-2

M
R

-3

M
R

-5

M
R

-8

M
R

-1
0

M
R

-1
5

M
R

-2
0

M
R

-2
5

M
R

-3
0

M
R

-4
0

O
b

je
ct

iv
e 

(i
n

 m
ill

io
n

s)

Message Rate (MR)

(a) Average Convergance (b) Average Final Solution

Figure 11: Average convergence graphs and final solutions using a 12-processor island model
PGA for different values of migration rate MR

21



6 Summary and Conclusions

As it has been well established that most mathematical programming models for manufac-

turing cell formation problem in a single time period are NP-hard. Mathematical models for

multiple period cell formation problems are normally much more difficult to solve due to the

nature of combinatorial optimization. To this end, more powerful methods should be developed

to solve dynamic cell formation problems. Some researchers recently proposed search methods

based on genetic algorithm, Tabu search, simulated annealing, and other meta-heuristic search

methods to solve these and similar problems. These search methods are generally able to find

good solutions in reasonable amounts of computing time. However, as they are applied to larger

and more complex problems, there is substantial increase in CPU time and memory required

to find adequate problem solutions. Moreover, when these search methods are used to solv-

ing large and complex problems, there are higher probabilities that the search processes will

be trapped in local optima. In such situations, the most promising choice is the implementa-

tion of the algorithms on parallel computing systems. Nowadays, such facilities are becoming

more available to scientific computing as well as to industry applications while there have been

limited reports on the use of parallel computing in production research. In this paper, we de-

veloped and tested different island model parallel GAs for solving dynamic manufacturing cell

formation problems. We evaluated the performance of the parallel genetic algorithm against a

sequential GA and an off-shelf optimization package. The parallel algorithm approach demon-

strate substantial reductions of computing time and improves the search performances. The

results found show the importance of using parallel genetic algorithms in solving dynamic cell

formation problems where there are no reports on their use. We also evaluated the impacts

of several parameters of the PGA on its performance in solving the dynamic cell formation

model. These parameters include connection topology, migration policy, migration frequency

and migration rate. The PGA with randomly connected topology outperforms the other PGAs

having different topologies. This randomly connected topology proposed in this paper has a

parameter to control the degree of connectivity and reduces the difficulty in choosing a suitable

topology out of several known topologies. We plan to develop efficient parallel meta-heuristic

algorithms and to solve other in production and operation problems. They include scheduling,

facility layout, aggregate planning, inventory control, maintenance, supply chain management

and capacity planning.
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